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ABSTRACT
The role of the intratumoral microbiome in gastric cancer (GC) has not been comprehensively 
assessed. Here, we explored the relationship between the microbial community and GC prognosis 
and therapy efficacy. Several cancer-associated microbial characteristics were identified, including 
increased α-diversity, differential β-diversity, and decreased Helicobacter pylori abundance. After 
adjusting for clinical features, prognostic analysis revealed 2 phyla, 14 genera, and 5 species 
associated with the overall survival of patients with GC. Additionally, 2 phyla, 14 genera, and 6 
species were associated with adjuvant chemotherapy (ACT) efficacy in patients with stage II – III GC. 
Furthermore, we classified GC microbiome structures into three microbial subtypes (MS1, MS2 and 
MS3) with distinguishing features. The MS1 subtype exhibited high immune activity and enrich-
ment of microbiota related to immunotherapy and butyric acid-producing, as well as potential 
benefits in immunotherapy. MS2 featured the highest α-diversity and activation of the TFF path-
way, MS3 was characterized by epithelial-mesenchymal transition and was associated with poor 
prognosis and reduced ACT efficacy. Collectively, the results of this study provide valuable insights 
into the microbial characteristics associated with GC prognosis and therapy efficacy.
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Introduction

As detection technologies have advanced and our 
understanding of the tumor microenvironment 
(TME) has deepened, increasing evidence has con-
firmed the presence of microbiota within, and 
complex interactions with, tumors.1,2 

Intratumoral microbiota may affect cancer devel-
opment and progression through myriad mechan-
isms, such as reshaping the TME, promoting tumor 
metastasis, and influencing therapy efficacy.3 

However, the precise role that intratumoral micro-
biota have in cancer pathogenesis, remains unclear. 
Hence, elucidating the complex interactions 
between the microbiota, TME, and cancer cells 
can provide valuable insights into potential cancer 
therapies and aid the evaluation of therapy efficacy 
for individual patients.

Gastric cancer (GC) is a complex disease with 
multiple risk factors. In particular, the intratumoral 
microbiota has emerged as a potential risk factor. 
Historically, the human stomach was thought to 
serve as the exclusive habitat for Helicobacter pylori 
due to its acidity and other antimicrobial factors, 
making it unsuitable for other microorganisms. 
However, this view has recently been challenged as 
non-Helicobacter pylori-microbiota were found to 
impact GC progression by altering immune and 
metabolic homeostasis.4–8 Moreover, several studies 
have extensively characterized the microbiota pro-
files of the stomach and GC, and those associated 
with GC development.9–12 However, there remains 
a lack of research into the relationship between 
intratumoral microbiota and the clinical features, 
prognosis, and chemotherapy and immunotherapy 
efficacy in GC. Hence, the clinical translation of gut 
microbiota in GC research has been limited.

The rapid advancement of omics technologies 
has led to the molecular and genomic characteriza-
tion of GC, representing a significant area of 
research. Indeed, new GC subtypes have been 
established based on genomic, transcriptomic, 
and proteomic analyses, improving the stratifica-
tion of patient prognosis and advancing the devel-
opment of targeted therapies.13–15 However, our 
understanding of microbial subtypes (Msubtypes) 
remains limited. Current research has focused on 
individual pathogens or is constrained by small 
sample sizes and a lack of clinical outcome 

information. Hence, studies seeking to characterize 
the Msubtypes associated with GC and elucidate 
their clinical significance and molecular features, 
are greatly needed.

In this study, we conducted a comprehensive 
analysis combining microbiome (16S rRNA gene 
sequencing) data from 251 GC samples with paired 
noncancerous adjacent tissues (NATs), transcrip-
tome data from 94 GC samples, and detailed clin-
ical characteristics. Our study aimed to elucidate 
the different microbial characteristics among clin-
ical subgroups and identify microbiota with inde-
pendent prognostic significance for overall survival 
(OS) and adjuvant chemotherapy (ACT). 
Additionally, we performed microbiome-centered 
cluster analysis to identify subtypes with distinct 
molecular characteristics associated with GC prog-
nosis and chemotherapy and immunotherapy effi-
cacy. Taken together, our findings reveal the 
association between intratumoral microbiota and 
clinical outcomes in GC, providing valuable 
insights for precision medicine.

Results

GC intratumoral microbiome landscape

Primary GC samples and paired NATs were col-
lected from 251 patients with GC. The median age 
of the patients was 62 years (range: 36–84 years). Of 
the GC samples, 11.6% were Epstein-Barr virus 
(EBV)-positive (n = 29), 30.7% were mismatch 
repair deficient (dMMR; n = 77), and 57% were 
proficient mismatch repair (pMMR; n = 150). 
Moreover, 12.4% of the GC samples were stage 
I (n = 31), 36.7% were stage II (n = 92), 50.2% 
were stage III (n = 126), and 0.8% were stage IV 
(n = 2). Additionally, 66.5% (n = 167) of the 
patients received ACT after surgery. All clinical 
information is summarized in Table S1 and pre-
sented in Figure 1a. Information related to quality 
control is summarized in Table S2. The rarefaction 
curve indicated that the microecological character-
istics of GC and NAT reached saturation with 
increased sequencing depth (Figure 1b).

We evaluated the differences in the overall intra-
tumoral microbial community structures between 
GC samples and NAT (251 pairs). Analyses of the 
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Figure 1. Intratumoral microbiome landscape of gastric cancer (GC). (a) Summary of the clinical characteristics of 251 patients with GC. 
(b) Rarefaction curve of GC and noncancerous adjacent tissues (NAT). (c) α-diversity difference between GC and NAT. (d) Principal 
coordinate analysis (PCoA) of the microbiome data for GC and NAT. (e) Differences in microbiota abundances between GC and NAT. (f) 
α-Diversity differences and PCoA among dMMR, EBV and pMMR subtypes. (g) Microbiota abundance differences among dMMR, EBV 
and pMMR subtypes. (h) Correlations between genera (top 20) and EBV load. The size of the circle represents the magnitude of the 
Spearman correlation coefficient.
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GC and NAT genera profiles revealed a weak cor-
relation (ρ = 0.08; Figure S1A). Moreover, GC sam-
ples exhibited increased α-diversity compared with 
those in NATs at both ASV and genus levels 
(Figure 1c). Furthermore, β-diversity analysis 
revealed a significant separation between GC and 
NAT samples (Figure 1d; PERMANOVA: 
p < 0.001). We also identified 16 phyla, 75 genera, 
and 34 species that were significantly enriched in 
GC compared with NAT (Adj p < 0.05; Figure 1e, 
Table S3–S5), including several well-established 
GC-associated bacteria such as Streptococcus, 
Prevotella, Fusobacterium, Parvimonas, and 
Lactobacillus.16,17 In addition, the Helicobacter 
genus and Helicobacter pylori species were predo-
minant in NAT with markedly decreased abun-
dance in the GC samples (Figure S1B). These 
findings highlight the distinct microbial ecologies 
between GC and NAT.

Considering the lack of consensus on the rela-
tionship between microbiota and clinical features, 
we compared the intratumoral microbial commu-
nity structures of different clinical subgroups based 
on age, sex, pathology, tumor grade, location, vas-
cular invasion, TNM stage, Lauren subtype, and 
molecular subtype. The results revealed that only 
the molecular subtype exhibited significant differ-
ences in microbial community structures (Figure 1f 
and Figure S1C – S1D). Moreover, compared to 
pMMR subtype, both the EBV and dMMR sub-
types showed a large number of different genera 
(Figure 1g). These findings suggest that dMMR and 
EBV subtypes have relatively specific microbial 
characteristics.

Currently, little is known regarding the associa-
tion between EBV subtypes and microbiota. Hence, 
we conducted a transcriptome analysis of 94 tumor 
samples and aligned the data with the EBV genome 
to assess the viral load of each sample. As expected, 
the EBV subtypes exhibited higher EBV load. 
(Figure S1E). Further correlation analyses identi-
fied the top 20 genera positively correlated with the 
EBV load; Butyricicoccus was among these genera 
(Figure 1h). Interestingly, previous studies have 
reported a positive association between 
Butyricicoccus and EBV in the blood and 
plasma.18 Furthermore, we observed a significant 
increase in the abundance of Butyricicoccus in the 
EBV subtype (Figure S1F). These results suggest 

a potential regulatory relationship between EBV 
and other microbiota in the EBV subtype.

Exploring the microbial taxa associated with GC OS 
and ACT

Increasing evidence has shown that intratumoral 
bacteria are associated with the prognosis of cancer 
patients.19–21 However, the relationship between 
GC prognosis and the microbial profile remains 
unclear. Hence, we performed univariate Cox ana-
lysis to identify prognostic microbiota associated 
with patient OS at the phylum, genus, and species 
levels. Results identified 2 phyla, 23 genera, and 9 
species associated with GC OS (Figure S2A). 
Furthermore, multivariable Cox regression was 
used to adjust for multiple clinical features, includ-
ing age, sex, pathology, grade, location, vascular 
invasion, TNM stage, Lauren subtype, and mole-
cular subtype, and to identify independent prog-
nostic microbiota. Ultimately, 2 phyla, 14 genera, 
and 5 species were identified as independent prog-
nostic microbiota for the OS of GC (Figure 2a).

Considering that 5-fluorouracil-based ACT is 
the standard treatment for postoperative stage II 
and III GC, there is still a lack of awareness regard-
ing the prognostic factors that influence the out-
comes in this particular group.22 Therefore, 2 
phyla, 22 genera, and 12 species were identified to 
be associated with the OS of stage II – III GC 
receiving ACT (Figure S2B). After adjusting for 
clinical features, 2 phyla, 14 genera, and 6 species 
were considered the key microbiota influencing 
ACT efficacy (Figure 2b).

Identification of intratumoral microbial subtypes

The coexistence of microorganisms with anti- 
tumor and pro-tumor effects within the TME 
emphasizes the need to comprehensively evaluate 
the microbial characteristics rather than focusing 
on a single species. To gain a comprehensive 
understanding of the relationship between the 
intratumoral microbiome and GC outcomes, we 
identified three Msubtypes in the intratumoral 
microbial profiles (Figure S3). The MS1 subtype 
contained the most subtype-specific genera, 
including Parabacteroides, Ruminococcus, 
Butyricicoccus, and Lactobacillus. The MS2 subtype 

4 G. WANG ET AL.



contained the most tumor-enriched genera, includ-
ing Rhodoplanes, Nocardioides, Kaistobacter, and 
Pseudonocardia. Meanwhile, the MS3 subtype was 
characterized by Sphingobium, Delftia, 
Comamonas, and Stenotrophomonas. Delftia was 
associated with poor OS and poor ACT efficacy 
(Figure 3a). These three subtype categories were 
further supported by co-occurrence analysis of 
genera exhibiting strong positive correlations 
(Figure S4A).

In the joint analysis with clinical features, EBV 
subtype was enriched within the MS1 subtype, 
dMMR subtype within the MS2 subtype, and 
pMMR subtype within the MS3 subtype. Moreover, 
no significant correlation was observed between the 
Msubtype and other clinical features (Table S6). 
Furthermore, survival analysis revealed that patients 
assigned to the MS3 subtype had the worst OS (Figure 
3b). Additionally, the MS2 subtype had the highest α- 
diversity, and the MS3 subtype had the lowest. 
Meanwhile, the β-diversity analysis revealed that the 

microbial community exhibited phylogenetic differ-
ences within each subtype (PERMANOVA: 
p = 0.001; Figure 3c and Figure S4B).

To assess the metabolic differences between 
Msubtypes, we constructed a virtual metagenome 
for each sample’s microbiome using PICRUSt2 
software. Several putative metacommunity-related 
functional shifts were identified between 
Msubtypes. More specifically, MS1 was character-
ized by the potential enrichment of carbohydrate 
metabolism pathways, MS2 exhibited increased 
potential for oxidative phosphorylation, TCA 
cycle, and amino acid metabolism, and MS3 
might be associated with bacterial secretion system 
and glutathione metabolism (Figure 3d). To further 
investigate the variation patterns among the 
Msubtypes, we characterized the co-abundance 
patterns of each subtype. The MS1 subtype was 
characterized by the dominance of Halomonas 
and the hub genus Blautia. In contrast, MS2 was 
predominated by Burkholderia and the hub genus 

Figure 2. Taxa associated with overall survival (OS) and adjuvant chemotherapy (ACT) after adjusting for clinical features. (a) Phyla, 
genera, and species associated with OS, after adjusting for clinical features. (b) Phyla, genera, and species associated with ACT, after 
adjusting for clinical features.
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Chelativorans. The MS3 subtype was characterized 
by Acinetobacter and the hub genus 
Propionibacterium (Figure 3e). In total, 225 (MS1), 
155 (MS2), and 145 (MS3) associations were identi-
fied (Figure S4C). Interestingly, the Msubtypes shared 
few associations, indicating significant changes in the 
symbiotic networks among the subtypes.

Multiple cohort analysis reveals that MS3 is 
associated with poor OS, RFS and poor 
chemotherapy efficacy

To further explore the biological characteristics of the 
three subtypes, we evaluated the transcriptome data 
for 94 samples. Gene Set Enrichment Analysis 
(GSEA) indicated that the MS1 subtype exhibited 

Figure 3. Msubtypes and their correlation with clinical gastric cancer (GC) outcomes. (a) Heatmap of differentially abundant genera 
(Adj p < 0.05, Log2 FC > 2, and AUC > 0.7) among the Msubtypes. (b) Kaplan-Meier curve for overall survival (OS) among the 
Msubtypes. (c) α-Diversity differences and PCoA among the Msubtypes. (d) Co-abundance patterns among the genera of the 
Msubtypes.
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enrichment of numerous immune-related pathways, 
including PD1 signaling, suggesting its potential suit-
ability for immunotherapy. The MS2 subtype was 
characterized by the TFF pathway, which plays an 
important role in maintaining the integrity of the 
gastrointestinal tract and promoting tissue repair. 
Meanwhile, the MS3 subtype was characterized by 
digestion and absorption, WNT signaling, and epithe-
lial-mesenchymal transition (EMT; Figure 4a). 
According to previous reports, Helicobacter pylori 
potentiates EMT in GC.23,24 Interestingly, we found 
that the MS3 subtype had the highest Helicobacter 
pylori abundance (Figure 4b).

Immune infiltration analysis indicated that the 
MS1 subtype was dominated by CD8+ T cells 
(Figure S5A, Table S7), which may explain the 
better prognosis for patients with the MS1 subtype. 
We further determined whether the relationship 
between our subtypes and prognosis was universal 
by applying the Msubtypes to six published GC 
transcriptomic datasets (see Supplementary meth-
ods and Figure S5B). Survival analysis of multiple 
cohorts revealed that patients with the MS3 sub-
type had the worst OS and recurrence-free survival 
(RFS; Figure 4c and S5C). For patients with stage 
II – III GC who received ACT, the MS3 subtype 

Figure 4. MS3 is associated with poor overall survival (OS), regression-free survival (RFS), and poor chemotherapy efficacy. (a) GSEA of 
enriched pathways at the transcriptome level among Msubtypes. (b) Differences in Helicobacter pylori abundances among Msubtypes. 
(c) Kaplan-Meier curves for OS among the Msubtypes based on patients from the five transcriptome cohorts. (d) Kaplan-Meier curves 
for OS among the Msubtypes based on patients with stage II III gastric cancer (GC) who received adjuvant chemotherapy (ACT), from 
the three transcriptome cohorts. (e) Differences in response to neoadjuvant chemotherapy (NAC) among the Msubtypes, based on the 
published PUCH cohort data.
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was also associated with the worst OS and RFS 
(Figure 4d and S5D). Moreover, the MS3 subtype 
exhibited resistance to neoadjuvant chemotherapy 
(NAC) in a cohort of patients at our center 
(Figure 4e). These results demonstrate the clinical 
relevance of the Msubtypes.

MS1 is associated with favorable efficacy of 
immunotherapy

The MS1 subtype is characterized by increased 
immune-related pathways and PD1 signaling, indi-
cating its potential suitability for anti-PD1/PDL1 
therapy. To further validate this result, we per-
formed an integrative analysis of a curated list of 
166 genes, including immune checkpoint genes 
and other known and emerging viable immuno-
modulatory targets (Table S8). The results showed 
that the expression of genes from all six immune- 
related categories was significantly upregulated in 
the MS1 subtype, including CD274 and IDO1 
(Figure 5a and Figure S6A).

Considering that transcriptome and microbiome 
studies have aided the prediction of immunother-
apy efficacy in various cancer types, we collected 
six mRNA signatures and nine microbiota signa-
tures associated with immunotherapy response and 
CD8+ T cell infiltration (Table S9). The scores for 
these signatures were significantly higher in the 
MS1 subtype than the other subtypes in our cohort 
(Figure 5b-d). Further analysis showed that the 
MS1 subtype could effectively distinguish potential 
immunotherapy-responsive patients from non- 
responsive patients within the dMMR, EBV, and 
pMMR subtypes based on the microbiota signa-
tures (Figure S6B). Intriguingly, several butyric 
acid-producing genera were significantly enriched 
in the MS1 subtype (Figure 5e); notably, butyric 
acid has been demonstrated to activate cytotoxic 
CD8+ T cells and enhance the effectiveness of anti- 
PD1 therapy.25,26

To further analyze the relationship between MS1 
and immunotherapy, we performed a submap ana-
lysis between the three subtypes in our cohorts and 
the response (R) and non-response (NR) sub-
groups of the two GC cohorts receiving immu-
notherapy. The MS1 subtype was significantly 
associated with the responsive subgroups 

(Figure 5f), suggesting that the MS1 subtype may 
benefit from immunotherapy.

The regulation and shaping of tumor immu-
nity are influenced by microbial microenviron-
ments and the metabolites produced by 
microbes27,28 Currently, studies are establishing 
links between microbes and immune function.29 

The use of omics has accelerated the analyses of 
these relationships. Thus, to elucidate the asso-
ciation between microbes and immunity in these 
three Msubtypes, we applied the O2PLS model to 
perform a joint analysis of immune-related genes 
and microbial genera. The 15 most relevant 
immune genes and genera were identified for 
each Msubtype, which were used to construct 
networks. In the MS1 subtype, IDO1 and 
CD274 had the most associations with the micro-
biome, suggesting that they may be key targets 
for regulating the microbial microenvironment in 
this subtype. In the MS2 subtype, four genera 
exhibited extensive associations with immune 
genes, indicating that these genera might affect 
immunity in the MS2 subtype. However, the MS3 
subtype lacked interactions between the immune 
system and microbiome (Figure S6C).

Discussion

In this study, we conducted intratumoral micro-
biome profiling of patients with GC. Our study 
sheds light on the relationship between the intra-
tumoral microbiome and clinical features and out-
comes of GC. We also identified three microbial 
subtypes with distinct microbial and genetic char-
acteristics, offering potential guidance for persona-
lized patient therapy. Moreover, the results of this 
study provide a valuable resource for further 
research into the clinical applications of the intra-
tumoral microbiota.

Although Helicobacter pylori has been impli-
cated in the malignant transformation, invasion, 
metastasis, and immune suppression of GC,30 we 
found that the abundance of Helicobacter pylori 
was significantly reduced in GC compared to 
NAT and was not directly correlated with clinical 
outcomes. Meanwhile, the MS3 subtype, associated 
with the worst survival, had the highest 
Helicobacter pylori abundance. This suggests that 
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Helicobacter pylori infection may play a complex 
role in GC initiation and progression.

While various omics studies have established 
a significant correlation between gut microbiota 
and cancer prognosis and treatment response,31– 

33 research on intratumoral microbiota is limited. 
Our study addressed this issue and identified 2 
phyla, 21 genera, and 8 species associated with OS 
or ACT efficacy in GC. These findings suggest that 
the microbiota composition can serve as a potential 
prognostic marker and may influence the efficacy 

of chemotherapy in GC. Interestingly, no beneficial 
microbiota associated with GC prognosis were 
found. Hence, from a translational perspective, 
the use of antibiotics rather than probiotics may 
improve GC prognosis. Indeed, antibiotics can 
inhibit the growth of GC cells and enhance the 
efficacy of chemotherapy for advanced GC.34,35 

Our findings suggest the possibility that selective 
bacterial eradication or manipulation might 
improve prognosis. Although these findings 
require further validation, they provide insights 

Figure 5. MS1 is associated with favorable immunotherapy efficacy. (a) Differences in the expression of immune genes among the 
Msubtypes. (b) Differences in immunotherapy-associated mRNA signatures among the Msubtypes. (c) Differences in immunotherapy- 
associated microbiota signatures among Msubtypes. (d) Differences in CD8+ T cell-associated microbiota signatures among the 
Msubtypes. (e) Heatmap of butyric acid-producing genera among the Msubtypes. (f) Submap analysis of the three Msubtypes 
between our cohort and the response (R) and non-response (NR) subgroups of two gastric cancer (GC) cohorts who received 
immunotherapy.
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into the potential clinical translation of the intra-
tumoral microbiome in GC.

We employed a microbiota-based classification 
method to identify three GC subtypes, each with 
distinct molecular features that connect clinical 
and molecular characteristics. Specifically, we 
found that the MS1 subtype exhibited high 
immune activity and upregulated expression of 
multiple immune checkpoints, such as CD274 
and IDO1. This suggests that immunotherapy 
may have potential benefits for patients with this 
subtype. This was supported further by the 
immune-related microbial features. Although 
these features were derived from the studies of the 
gut microbiome in patients undergoing immu-
notherapy, including two other GC-based 
studies,36,37 suggested that the intratumoral micro-
biome may originate from the gut microbiome.38,39 

Interestingly, we observed the enrichment of buty-
ric acid-producing genera in the MS1 subtype, 
indicating the potential enrichment of butyric 
acid. Butyric acid, an important short-chain fatty 
acid, plays a crucial role in immune regulation and 
gastrointestinal disorders.40,41 Recent studies have 
also indicated its positive impact on promoting 
CD8+ T cells activation and enhancing the efficacy 
of immunotherapy.25,26 The MS2 subtype featured 
the highest α-diversity and enrichment of the TFF 
pathway. The TFF pathway is associated with pre-
served gastric function, which may account for the 
relatively favorable prognosis of patients with this 
subtype. In contrast, the MS3 subtype was charac-
terized by EMT features at the transcriptome level, 
which have been implicated in various aspects of 
tumor development, including tumor invasion, 
metastasis, cancer stemness, and therapy 
resistance.42,43 Additionally, microbiome analysis 
revealed the increased potential for glutathione 
metabolism that have been linked to platinum 
resistance.44,45 These features may contribute to 
the poor clinical prognosis and response to ACT 
observed in patients with the MS3 subtype. Our 
results emphasize the potential of the Msubtype as 
a potential application with a future opportunity 
for identification of correlated microbiotas to facil-
itate clinical decision-making. In addition, our 
findings suggest the possibility that selective bac-
terial eradication or manipulation might improve 
therapy efficacy. For instance, the oral 

administration of Bifidobacterium has the potential 
to enhance immunotherapy in melanoma.46 In 
addition, transplanting the gut microbiota of che-
motherapy-responsive mice can reverse che-
motherapy resistance.47

This study used a large independent cohort of 
microbiome samples as well as detailed clinical and 
therapy data to identify and elucidate the molecular 
characteristics and clinical significance of micro-
bial subtypes. These findings were validated in 
multiple independent cohorts. Despite the 
strengths of this study, there were certain limita-
tions. First, the sequencing resolution of the 16s 
rRNA was limited and did not allow for precise 
microbiota identification. Second, we observed 
a significant enrichment of butyric acid- 
producing genera in the MS1 subtype, suggesting 
a potential increase in butyric acid. However, this 
finding needs to be further validated by metabolite 
detection. Third, owing to the lack of research on 
intratumoral microbiota in GC and small sample 
sizes, as well as the lack of prognostic information, 
we were unable to identify an appropriate cohort of 
microbiome samples for external validation. 
Further research on the microbial function and 
interaction, together with improved sequencing 
techniques, are required to validate and expand 
upon these findings.

In conclusion, our study provides 
a comprehensive microbial perspective that 
enhances our understanding of GC. First, we iden-
tified the microbiota associated with GC prognosis 
and ACT efficacy. Notably, we discovered that the 
intratumoral microbiome pattern, referred to the 
Msubtype, is associated with OS as well as che-
motherapy and immunotherapy efficacy in GC. 
Importantly, our study provides an integrated and 
extensive microbial resource for the further 
exploration of the pathogenesis of GC.

Material and methods

Clinical specimens of GC

GC samples were collected from the Peking 
University Cancer Hospital in China. None of the 
enrolled patients had received therapy before sur-
gery, and all were followed up for five years after 
resection. After radical gastrectomy, resected 
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tumor samples and NATs (>5 cm from the tumor 
edge) were obtained and snap-frozen in liquid 
nitrogen in less than 30 min after resection. Then 
the tissues were stored at − 80°C. To ensure the 
quality of tissues, routine histological evaluation 
was performed for each sample. All of the samples 
were obtained, stored, and transported in a sterile 
environment. Clinical information was collected 
for the patients, including age, sex, pathology, 
grade, location, vascular invasion, TNM stage, 
Lauren subtype, molecular subtype, and ACT 
information (Table S1). Patients who received 
ACT were defined as those who received at least 
one cycle of 5-fluorouracil-based ACT.48 OS was 
defined as the time interval between surgery and 
death. This study was approved by the Research 
Ethics Committee of Peking University Cancer 
Hospital (2019KT111), and written informed con-
sent was obtained from all patients.

dMMR status determination and EBV in situ 
hybridization

Immunohistochemistry (IHC) for MLH1, PMS2, 
MSH2, and MSH6 was performed as previously 
described to determine the deficient mismatch 
repair (dMMR) status.49 The monoclonal antibo-
dies used specific for MLH1 (Clone ES05, DAKO), 
MSH2 (Clone FE11, DAKO), PMS2 (Clone EP51, 
DAKO), and MSH6 (EP49, DAKO). Tumors with 
a negative stain for any of these markers were 
considered dMMR, and tumors with positive stain-
ing for all four were defined as proficient mismatch 
repair (pMMR).

Chromogenic in situ hybridization with EBV- 
encoded small RNA (EBER) was performed to 
detect EBV infection using fluorescein-labeled oli-
gonucleotide probes (INFORMEBER Probe; 
Ventana). Specimens displaying EBER nuclear 
expression in > 20% of the tumor cells were con-
sidered EBER-positive.

Primary GC dataset collection

We collected five transcriptome datasets, TCGA- 
STAD (T = 375), GSE84437 (T = 433),50 

GSE62254/ACRG (T = 300),14 GSE26942 
(T = 217),51 and GSE13861 (T = 90),52 from the 
Gene Expression Omnibus (GEO) and The 

Cancer Genome Atlas (TCGA) databases; 1415 
samples with clinical data were included in the 
study. The three cohorts ACRG, GSE26942, and 
GSE13861 contained information on ACT. In addi-
tion, we collected a transcriptome dataset of 
patients who responded to neoadjuvant che-
motherapy (NAC) from our previous study.53 

Gene expression data was log2 transformed if 
necessary.

Patients with GC who received immunotherapy 
dataset collection

Two transcriptomic datasets with immunotherapy 
response information were included in our study: 
patients with GC (T = 45) treated with anti-PD1 
therapy54 and patients with GC (T = 24) treated 
with anti-PD1/PDL1/CTLA4 therapy.55 Gene 
expression data in all datasets was log2- and 
z-score-transformed, if necessary.

16S rRNA gene sequencing

A total of 251 GC tissue pairs were selected for 
microbiological analysis. Total genomic DNA sam-
ples were extracted using the OMEGA Soil DNA 
Kit (M5635–02) (OmegaBio-Tek, Norcross, GA, 
USA), following the manufacturer’s instructions, 
and stored at −20°C for further analysis. The quan-
tity and quality of extracted DNA were measured 
using a NanoDrop NC2000 spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA) 
and agarose gel electrophoresis, respectively. PCR 
amplification of the bacterial 16S rRNA gene V3- 
V4 region was performed using the forward primer 
338F (5’-ACTCCTACGGGAGGCAGCA-3’) and 
the reverse primer 806 R (5’-GGACTACHVGGGT 
WTCTAAT-3’). Sample-specific 7-bp barcodes 
were incorporated into the primers for multiplex 
sequencing. The PCR components contained 5 μl 
of buffer (5×), 0.25 μl of Fast pfu DNA Polymerase 
(5 U/μl), 2 μl (2.5 mM) of dNTPs, 1 μl (10 uM) of 
the forward and reverse primers, 1 μl of DNA 
Template, and 14.75 μl of ddH2O. Thermal cycling 
consisted of initial denaturation at 98°C for 5 min, 
followed by 25 cycles of denaturation at 98°C for 30 
s, annealing at 52°C for 30 s, and extension at 72°C 
for 45 s, with a final extension cycle for 5 min at 
72°C. The PCR amplicons were purified using 
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Vazyme VAHTSTM DNA Clean Beads (Vazyme, 
Nanjing, China) and quantified using a Quant-iT 
PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, 
CA, USA). After the individual quantification step, 
the amplicons were pooled in equal amounts, and 
pair-end 2 × 250bp sequencing was performed 
using the Illumina NovaSeq platform with the 
NovaSeq 6000 SP Reagent Kit (500 cycles) at 
Shanghai Personal Biotechnology Co., Ltd 
(Shanghai, China).

16S rRNA data analysis

Sequence data analyses were performed using 
QIIME2.56 Taxonomic information for each ASV 
is obtained by aligning it with reference sequences 
in the Greengenes database. Alpha diversity indices 
were calculated using the ASV table in QIIME2. 
Beta diversity analysis was performed to assess the 
structural variation of microbial communities 
across samples using Bray-Curtis metrics and was 
analyzed via principal coordinate analysis (PCoA). 
The significance of differential microbiota among 
groups was assessed using PERMANOVA. 
SparCC57 was used to compute the co-occurrence 
between microbiota. The network was visualized 
and analyzed using the iGraph package. To mea-
sure and identify the hub microbiota in the net-
work, Kleinberg’s hub centrality scores were 
calculated for each network and scaled across all 
networks. O2PLS modeling was then employed to 
delineate the relationships between microbiota and 
immune-related genes; the main immune-related 
genes and core microbial genera with strong corre-
lations were selected. Microbial functions were pre-
dicted using PICRUSt258 in the Kyoto 
Encyclopedia of Genes and Genomes (KEGG, 
https://www.kegg.jp/) database.

RNA extraction

A total of 94 tumors were analyzed using RNA-seq. 
Total RNA was isolated using Trizol reagent 
(Invitrogen Life Technologies), and the concentra-
tion, quality, and integrity of RNA were deter-
mined using a NanoDrop spectrophotometer 
(Thermo Scientific). Three micrograms of RNA 
were used as the input material for RNA sample 
preparation. Sequencing libraries were generated 

by first purifying mRNA from the total RNA 
using poly T oligo-attached magnetic beads. 
Fragmentation was performed using divalent 
cations at elevated temperatures in the Illumina 
proprietary fragmentation buffer. Then, first- 
strand cDNA was synthesized using random oligo-
nucleotides and SuperScript II reverse transcrip-
tase. Second-strand cDNA synthesis was 
subsequently performed using DNA polymerase 
I and RNase H. The remaining overhangs were 
converted into blunt ends via exonuclease/poly-
merase activities, and the enzymes were removed. 
After adenylation of the 3′ ends of the DNA frag-
ments, Illumina PE adapter oligonucleotides were 
ligated to prepare them for hybridization. To select 
400–500 bp cDNA fragments, library fragments 
were purified using the AMPure XP system 
(Beckman Coulter, Beverly, CA, USA). DNA frag-
ments with ligated adaptor molecules at both ends 
were selectively enriched using the Illumina PCR 
Primer Cocktail in a 15 cycle PCR reaction. The 
products were purified (AMPure XP system) and 
quantified using an Agilent High-Sensitivity DNA 
Assay on a Bioanalyzer 2100 system (Agilent 
Technologies). The library was sequenced using 
a NovaSeq 6000 platform (Illumina).

RNA-Seq data analysis

Quality control and raw data processing were per-
formed using FastQC (v0.11.9) and Cutadapt 
(v1.15).59 The reads were aligned to the reference 
genome (hg38) using HISAT2 (v2.0.5).60 HTSeq 
(0.9.1)61 was applied to obtain FPKM. The FPKM 
values were transformed into TPM values. Gene 
expression was then log2-transformed. The EBV 
reference genome was downloaded from https:// 
www.ncbi.nlm.nih.gov/datasets/genome/GCA_ 
027943465.1/and the EBV genome was mapped 
using the STAR software (v2.7.9a),62 generating 
the read counts for the EBV genome. The EBV 
load of each sample was defined as the total read 
counts of the EBV genome.

Deconvolution of GC transcriptome data using the 
MCP-counter

To characterize the immune characteristics of the 
GC transcriptome, the abundance of eight immune 
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cells (T cells, CD8+ T cells, cytotoxic lymphocytes, 
NKs, B cells, monocytes, dendritic cells, and neu-
trophils) and two stromal cells (endothelial cells and 
CAFs) were estimated using the MCP-counter.63

Consensus clustering analysis

Microbial genera that were expressed in more than 
60% of the patient samples were selected for clus-
tering analysis. Consensus clustering was con-
ducted using the ConsensusClusterPlus package 
with the Pearson correlation as the distance 
measure.64 The consensus matrix for k = 3 showed 
clear separation between the subtypes. In addition, 
the consensus CDF and delta plots showed that the 
relative change in the area under the cumulative 
distribution function curve increased the most 
from two to three subtypes, whereas the others 
exhibited no significant increase. Furthermore, 
the three subtypes were significantly associated 
with patient survival (Figure S3). Taken together, 
the Msubtypes were defined using consensus clus-
tering with k = 3. Subtype-specific genera were 
defined as those that were highly enriched in 
a specific subtype (Adj p-value <0.05, Log2 FC >  
2, and AUC > 0.7).

Functional enrichment analysis

To further analyze biological characteristics of dif-
ferent subtypes, we performed gene set enrichment 
analysis (GSEA) to identify enriched pathways 
from the KEGG, Biocarta, Reactome, PID, 
Wikipathways, and Hallmarker databases asso-
ciated with the Msubtypes with at least 10 over-
lapping genes. GSEA was performed on the log2 
(FC) values from the differential abundance analy-
sis between Msubtypes and others in the transcrip-
tome. Pathways with an FDR < 0.1 and 
a normalized enrichment score (NES) > 0 were 
considered significantly enriched.

GC subtype classification and prediction evaluation

We used the support vector machine (SVM)65 

algorithm to divide samples from the published 
transcriptome cohorts into subtypes. The SVM 
algorithm was performed using e1071 package. 
A transcriptome dataset was used as the training 

set to train the model, and 10-fold cross- 
validation was performed to evaluate the accuracy 
of the model.

Subgroup correlation analysis of independent 
cohorts

An unsupervised subclass mapping method 
(SubMap) (GenePattern module “SubMap”) 
(https://cloud.genepattern.org) was used to identify 
similar subgroups between independent cohorts 
despite their clinical differences.66

Quantification and statistical analysis

Statistical analyses were performed using R (v. 4.2.1) 
unless otherwise stated. Standard statistical tests were 
used to analyze data from different groups. For cate-
gorical variables, Fisher’s exact test was applied, while 
continuous variables were evaluated via Wilcoxon 
rank-sum test to compare differences between two 
groups. The Spearman’s rank correlation coefficient 
was used to evaluate the correlations between two 
continuous variables. For survival analysis, the 
Kaplan-Meier method and log-rank test were used 
to compare survival distribution. Additionally, Cox 
analysis was applied to evaluate the correlation 
between survival and different variables and to calcu-
late hazard ratio (HR) values. All statistical tests were 
two-sided, and p < 0.05 was considered statistically 
significant.
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