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BSTRACT 

ntrinsic DNA properties including bending play a 

rucial role in diverse biological systems. A re- 
ent advance in a high-throughput technology called 

oop-seq makes it possible to determine the bend- 
bility of hundred thousand 50-bp DNA duplexes 

n one e xperiment. Ho we ver , it’ s still challenging 

o assess base-resolution sequence bendability in 

arg e g enomes such as human, which requires thou- 
ands of such experiments. Here, we introduce 

BendNet’ ––a deep neural network to predict the 

ntrinsic DNA bending at base-resolution by using 

oop-seq results in yeast as training data. BendNet 
an predict the DNA bendability of any given se- 
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uence from different species with high accuracy. 
o explore the utility of BendNet, we applied it to 

he human genome and observed DNA bendability 

s associated with chromatin features and disease 

isk regions involving transcription / enhancer reg- 
lation, DNA replication, transcription factor bind- 

ng and extrachromosomal circular DNA generation. 
hese findings expand our understanding on DNA 

echanics and its association with transcription reg- 
lation in mammals. Lastly, we built a comprehensive 

esource of genomic DNA bendability profiles for 307 

pecies by applying BendNet, and provided an online 

ool to assess the bendability of user-specified DNA 

equences ( http:// www.dnabendnet.com/ ). 
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GRAPHICAL ABSTRACT 

eccDNA

Database
307 species

DNA sequences BendNet

Epigenetic regulation
Genome conservarion
DNA replication
TF binding

Bendability

...ACCGCGGCGCG...

...ATTCCGGCAAG...

...AAATTATAATTA...

INTRODUCTION 

DNA-protein interactions are essential for many key cellu-
lar processes, including DNA replication ( 1 ), chromatin for-
mation ( 2 ) and transcriptional regulation ( 3 ). These inter-
actions r equir e DNA bending to embrace proteins, which
involves intrinsic properties of DNA fragments likely be-
low 100 base-pair (bp) ( 4 ). Assays, such as electrophoretic
mobility ( 5 ) and single-molecule fluorescence resonance en-
ergy transfer (smFRET) ( 6 ), have been developed to deter-
mine the DNA bending ability (termed as DNA bendabil-
ity). Specifically, they measure the looping rate of a single
DN A fragment of a pproximatel y 100 bp in length at a time,
ther efor e is limited by its low throughput. Recent advance
in a sequencing-based approach called loop-seq ( 7 , 8 ) has
led to the vast increase in throughput, which has scaled-up
looping rate detection from dozens to hundred thousand
DNA duplexes in one study through combining smFRET
and systematic enrichment of ligands by exponential enrich-
ment (SELEX) ( 9 ) selection methods. In the same study,
they applied loop-seq to demonstrate the contribution of
DNA bendability to nucleosome organization in yeast by
measuring the DNA looping ra te tha t tiles the regions of
interest at 7 bp resolution ( 8 ). Howe v er, it remains challeng-
ing to tile larger genomes such as human at base resolution,
because libr ary prepar ation of this method r equir es synthe-
sizing equivalent numbers of DNA duplexes to the genome
size that relies on constructing thousands of such libraries,
and this does not consider the sequence variations between
individuals. 

To extend bendability assessment to DNA duplexes in
large sequence space, we de v eloped a deep learning-based
method termed BendNet, which extracts and learns se-
quence features encoding DNA bendability using capsule
networks ( 10 ) without routing ( 11 ). BendNet can predict
DNA bendability of any gi v en sequence with a high agree-
ment to that measured by loop-seq and other low through-
put approaches. We also demonstra ted tha t BendNet can
accurately provide a finer map of DNA bendability in yeast
whole genome at base-resolution as compared to the origi-
nal loop-seq study ( 8 ), resulting in the same biological find-
ings. To explore the utility of BendNet, we applied it to the
human genome and obtained base-resolution map of DNA
bendability. We observed a rigid region (showing relati v ely
low bendability) located at transcriptional start / end sites
and enhancer centers. DNA bendability is associated with
chroma tin sta tes , epigenetic markers , G4 structures , repli-
cation timing and the frequency of SNPs in GWAS catalog.
The GC content is an intrinsic determinant of DNA bend-
ability, particularly in enhancers. Most transcription factors
(TFs) bind rigid DN A sequences, w hile some specific TFs,
such as EBF1 and CTCF, show an unusually high bendabil-
ity within their binding elements. Analyses of in silico mu-
tagenesis on 840 TF motifs re v ealed important nucleotide-
le v el features at the motif center that impact DNA bending.
Our w ork pro vides a tool to assess DNA bendability for
large-scale DNA sequences and expands our understand-
ing of DNA mechanics in chromatin regulation. To make
a comprehensi v e resource of DNA bendability, we applied
BendNet to whole genomes of 307 species and implemented
an easy-to-use interface through a w e bserver. 

MATERIALS AND METHODS 

T r aining and evaluation data 

Our model was trained and evaluated based on a set of
DN A fragments w hose bendability is measured by loop-
seq. This dataset consists of 270 806 DNA duplexes from
S. cerevisiae , measured by five independent experiments in-
cluding random, r efer ence and codon-alter ed sequences in
differ ent r egions of inter est. After r emoving outliers show-
ing extremely high frequency in each individual experiment,
and averaging the bendability of DNA duplexes with multi-
ple measurements, we obtained in total 264 860 valid DNA
duplexes and their bendability measurements as our pro-
cessed data for the following analyses. 

We trained two separated models to comprehensi v ely
evaluate our BendNet method. For training the primary
model, 264 860 DNA duplexes were randomly split into
70% training (185 402), 20% validation (52 972) and 10%
hold-out test (26 486) sets. For training the second model,
we hold out one of the fiv e independent e xperimental data
which contains bendability of DNA duplexes tiling the
chromosome V of yeast genome in 7-bp resolution as test
set (82 404), and randomly split the left data into training
(146 010) and validation sets (36 502) with the splitting ratio
of 8:2. 

Model ar chitectur e 

The BendNet ar chitectur e consists of a convolutional mod-
ule and a capsule module. The convolutional module in-
cludes multiple sequential convolutional blocks, each of
which has three stacked convolutional layers with increased
numbers of kernels followed by dropout and batch nor-
malization. The output of each convolutional block is fed
into a capsule block, which contains a capsule, dropout and
ba tch normaliza tion layers. The results of all capsule blocks
are stacked, and subsequently output to a fully connected
layer to produce a r egr ession scor e as bendability predic-
tion. More specifically, 
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) Input. BendNet takes one-hot encoding of DNA se- 
quences as input, i.e. N*50-bp DNA sequences were 
transformed into N*50*4 matrices, to the model. To en- 
sure the generalization of our model, we randomly re- 
verse complemented 50% of the input DNA sequences in 

training. 
) Convolutional module. This module contains multiple 

convolutional blocks, each of which has three convolu- 
tional layers with kernel sizes 2*1, 3*1 and 4*1, respec- 
ti v el y. To ca ptur e the global structur e of the input se-
quences, we used increased numbers of kernels for each 

convolutional block. In detail, three layers of the first 
convolutional b lock hav e 16 kernels of size 2*1, 32 kernels 
of size 3*1 and 64 kernels of size 4*1, while the numbers 
are 32, 64 and 128 for the second convolutional block, 
and so on. The number of convolutional blocks is a hy- 
perparameter to be determined by the validation set. 

) Capsule module. The capsule module consists of three 
capsule blocks, and each capsule block contains a cap- 
sule, a dropout and a batch normalization layer. 

) Output. The results of three capsule blocks are stacked 

and output to a dense layer to get a r egr ession scor e. 

BendNet with three convolutional blocks has in total 
87 442 parameters, including 285 484 trainable parame- 
ers and 1958 non-trainable parameters. The mean squared 

rror (MSE) is used as the loss function, and the Adapti v e 
oment Estimation algorithm is used to update the param- 

ters. The model with the minimum MSE on the validation 

et in 200 epochs was used as the final model. BendNet was 
ritten in Python using the TensorFlow and Keras frame- 
orks. 

yperparameter optimization approach 

ur model has two types of hyperparameters, i.e. 
tructur al-related hyperpar ameters including the num- 
er of convolutional / capsule modules, the number of 
apsule classes and the number of dimensions, and 

onstructur al-related hyperpar ameters including learning 

 ate, dropout r ate in convolutional and capsule blocks. We 
dopted dif ferent stra tegies to optimize two types of hyper- 
arameters. For thr ee structur e-r elated hyperparameters 
hich affect the model complexity, we used control variates 

o assign different values to the three hyperparameters 
nd recorded their minimum validation loss in 100 epochs. 
he hyperparameters were retained when validation loss 

s no longer reduced significantly. In other words, if two 

odels with different hyperparameters are comparable 
n accuracy, we will adopt the simpler one with smaller 
yperparameters. 

The genetic algorithm is adopted to tune the 
onstructur al-related hyperpar ameters. Basically, the 
alidation mean square error is used to measure the fitness 
f a set of hyperparameters. By randomly generating 

ar ameters, and exchanging par ameters as mutation and 

ross oper ations. We gener ated 50 generations in this 
enetic algorithm with each of which was composed of 
0 individuals. The best two individuals that have the 
inimum validation loss in 100 epochs in each generation 

ere selected to cross and mutate to produce the next 
eneration. The best performance was achie v ed with a 

earning rate of 0.02585, a dropout rate of 0.17632 in the 
onvolutional block, and a dropout rate of 0.14818 in the 
apsule block. 

odel comparison 

e compared BendNet with two widely used machine 
earning models – Random Forest and SVR, and six 

tate-of-the-art deep learning models – AlexNet, VGG16, 
oo gleNet22, ResNet34, DN AcycP and DeepBend with 

efault parameters on the same dataset. To train these mod- 
ls, we used an unbiased checkpoint strategy –– we retained 

he model with the smallest loss in the validation set - and 

rained them for 200 epochs on the same device (CentOS, 
TX3090Ti). To make an unbiased comparison, we in- 

luded both the model prediction results of BendNet before 
nd after hyperparameter optimization. 

ndependent validation datasets 

) Gallus gallus . This dataset includes the relati v e elec- 
trophoretic mobilities of se v en DNA fragments in CTCF 

binding regions of Gallus gallus. The relati v e elec- 
trophoretic mobility of a DNA fragment measures 
whether the corresponding region is bendable. In detail, 
DNA fragments are loaded into pBEND2 plasmid, and 

digested with restriction enzymes into a set of probes of 
equal length. 

) E. coli . The dataset includes the relati v e length (RL) of 
56 DNA fragments of length 57 bp provided by Wang 

et al. ( 12 ). According to their stud y, muta tions of 56 non-
redundant E. coli DNA fragments were induced in vitro 

within a 57 bp region which is loca ted a t the ilvIH operon
TSS –83 bp to –140 bp. RL is defined as the ratio of the
apparent length to the actual length, which is propor- 
tional to the bendability of the DNA fragment. 

) Human . The dataset contains Rbound / Rfree ratios of 
the 35 fragments which were composed of fiv e types of 
20 bp p53 response elements (p53 consensus sequence, 
p21 / waf1 / cip1, symmetric sequence, ribosomal gene 
cluster sequence (RGC), SV40 promoter sequence) and 

fiv e recombinant plasmids (pCon30, pWaf30, pSS30, 
pRGC30 and pSV30) in human. These plasmids con- 
tain the above five types of p53 binding sites flanked by 

tandeml y duplicated DN A sequences. The plasmids were 
cleaved at the seven restriction sites and 35 DNA frag- 
ments were obtained. The Rbound / Rfree ratio was cal- 
culated by the p53DBD-DNA complex’s electrophoretic 
mobility compared to free DNA. A fragment with a large 
Rbound / Rfree ratio is supposed to be more bendable. 

) Mouse . We obtained the bendability of over 90 000 mouse 
genomic DNA fragments from a recent loop-seq experi- 
ment ( 13 ). 

enome annotations and features in human 

he annotation of the protein-coding gene (PCG), 
ong non-coding RN A (lncRN A), non-coding RNA 

ncRN A) and pseudo gene were obtained from the 
encode GRCh38.p13 version of human genome. House- 

eeping genes and tissue-specific genes were obtained from 
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a previous study ( 14 ). Sequence conservation was obtained
from the UCSC ‘phastCons46wayPlacental’ track. 

DNA bendability groups of protein-coding genes 

We categorized all protein-coding genes (PCGs) into three
equally sized groups based on their average bendability
within the regions spanning from TSS –20 to +70 bp. These
groups were labeled as rigid, intermediate and bendable,
corresponding to the low, intermediate and high le v els of
bendability observed in the respective regions respecti v ely.
Meanwhile, we also performed the same analysis on tran-
scription end sites (TESs). 

Enhancer and super-enhancer annotation 

We downloaded enhancers of the human genome from Fan-
tom5 ( 15 ) and used bedtools ( 16 ) to remove enhancers that
overlap with promoters. Then the remaining enhancers were
used for further analyses. Super-Enhancers were down-
loaded from CircleBase ( 17 ). 

DNA bendability analysis in TSSs and TESs 

We obtained ATAC-seq, DNase-seq, MNase-seq,
H3K4me3, H3K27ac, H3K79me2 and POLR2A signals
in GM12878, K562 and HepG2 cell lines from ENCODE.
The sequencing signals in ±500 bp of rigid, intermediate
and bendable TSSs were obtained and compared through
the Wilco x on rank sum test. 

Association between DNA bendability and replication timing

We obtained replication timing data in three cell lines from
Massey et al. ( 18 ). We divided genomic regions into 100
groups with equal numbers of DNA fragments based on
replication timing, ranging from low (late) to high (early).
We then calculated the average replication timing signal and
DNA bendability for each group, and visualized their asso-
ciation using scatter plots. 

DNA bendability at G4 structure 

We obtained G4 regions from a previous G4-seq study
( 19 ) and analyzed DNA bendability distribution in those
regions. 

DNA bendability analysis in chromatin states and GWAS
SNPs 

We obtained 15 core chroma tin sta tes in four cell lines
(GM12878, A549, HepG2 and K562) fr om chr omHMM
( 20 ). We calculated the average bendability of each 200
bp r egion, and r eported the mean bendability for each
chroma tin sta te. To examine the correla tion between DNA
bendability and GC content, we computed the average
DNA bendability and GC content within 200 bp genomic
regions. For the GWAS SNP analysis, we fragmented the
human genome into 200 bp windows, and calculated the
frequency of GWAS SNPs ( 21 ) in each window. We then
grouped all windows based on the frequency of GWAS
SNPs, and calculated the average bendability in each group.
In order to eliminate the influence of total SNPs ( 22 ) to the
analysis. We calculated the corrected GWAS SNP counts for
each window by dividing the number of GWAS SNP counts
by the total SNP counts. These corrected counts were then
used to investigate the relationship between the relati v e
number of disease-associated variances and DNA bend-
ability. Furthermore, we also considered the significance of
GWAS SNPs in the analysis by comparing DNA bendabil-
ity to mean –log 10 significant scores of GWAS SNPs in each
window. 

T r anscription factor binding analysis 

We obtained the BigWig files and BED (peak) files of TFs
in GM12878 from ENCODE. We used bwtool to extract
the ChIP-seq signal and bendability in the peak regions of
each TF. We employed two methods to depict the DNA
bendability in the binding sites of different TFs: (i) we com-
puted the mean profile of bendability and each TF ChIP-
seq signal across all peaks in ±500 bp regions of peak cen-
ters, and calculated the Pearson correlation coefficient be-
tween them; (ii) we subtracted the average bendability of
surr ounding backgr ound regions (–500 bp to –100 bp and
100–500 bp) from the average bendability in peak centers
( ±100 bp) to obtain the relati v e bendability height in each of
the 152 TFs. To analyze the association between bendability
and TF ChIP-seq signals, we calculated the average ChIP-
seq signal per peak, and identified the top and bottom 25%
peak groups for each TF. The average bendability per peak
in the two groups was then calculated and compared by us-
ing the Wilco x on test. For TF binding and co-binding anal-
ysis, the ChIP-seq peaks of each TF were overlapped with
rigid and bendable TSSs ( ±500 bp region), and the number
of overlapping peaks was calculated and compared. 

Protein interaction network and enrichment analysis 

The pr otein-pr otein interactions were obtained fr om string
database ( https://string-db.org/ ). The enrichment analysis
was performed under the GO term ‘cell composition’. 

eccDNA analysis 

We obtained eccDNAs of fiv e categories (ncRNA, PC:
Protein-coding, pseudo gene, snoRN A and snRN A) from
circlebase ( 17 ) and predicted their corresponding bend-
ability scores. We gener ated r andom sequences with the
same length by bedtools ( 16 ) as the contr ol gr oup for the
comparison. 

Nucleotide effects at TF motif sites via in silico mutagenesis 

We obtained the genomic loci of 840 transcription fac-
tor (TF) binding motifs from the JASPAR database
( http://expdata.cmmt.ubc.ca/JASPAR/downloads/ 
UCSC tracks/2022/hg38/ ). As TFs can have variable
number of motif loci in the genome, we randomly selected
10000 positions per motif. We also randomly picked the
same number of genomic loci from the human genome
1000 times to generate a background sequence set. For

https://string-db.org/
http://expdata.cmmt.ubc.ca/JASPAR/downloads/UCSC_tracks/2022/hg38/
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bo ve tw o sets, the corresponding flanking sequences of 50 

p in length are extracted, with the motif sequence located 

t the center. We next randomly mutated each position 

n the sequence to the other three nucleotides, resulting 

n a total of 150 mutated sequences for each motif locus. 
e then applied BendNet to predict bendability of all 

equences and investigated the nucleotide effects in the 
otif and flanking regions on DNA bendability. 

enome-wide DNA bendability of 307 species 

e obtained the genome sequences of 307 species from 

he Ensembl database and applied BendNet to pre- 
ict their DNA bendability. All pr edictions ar e available 
t ( https://zenodo.org/deposit/7699690 and https://zenodo. 
rg/deposit/7663786 ). 

ata visualization 

eatmaps and average profile plots are generated by deep- 
ools ( 23 ). The rest plots are drawn in the R environment 
sing basic plot functions, ggplot2 and pheatmap packages. 
he Wilco x on test is used for calculating all the P -values. 

ESULTS 

v ervie w of BendNet 

e de v eloped BendNet (Figur e 1 A), inspir ed by capsule 
etwork ( 10 , 11 ) and homogeneous vector capsules ( 24 ), to
redict bendability of DNA duplex from sequence alone. 
he BendNet ar chitectur e consists of a convolutional mod- 
le and a capsule module (Figure 1 A). The convolutional 
odule includes multiple consecuti v e convolutional blocks, 

ach of which has three stacked convolutional layers with 

ncreased kernel and channel sizes followed by dropout and 

a tch normaliza tion layers. The output of each convolu- 
ional block is fed into a capsule block, which contains a 

apsule, a dropout and a batch normalization layer. The 
esults from all the capsule blocks are stacked, and subse- 
uently supplied to a fully connected layer to produce a re- 
r ession scor e as bendability pr ediction. 

We trained BendNet on the dataset of intrinsic DNA 

endability measured by loop-seq ( 7 ). The dataset con- 
ains the bendability of 270 806 DNA duplexes from fiv e 
ndependent experiments including random, r efer ence and 

odon-altered sequences in different regions of interest in 

east. We first examined the data distribution, and found 

n abnormally high frequency at the bendability score of 
.02096348 (over 9000 DNA duplex es). We r emoved these 
ata points, as these outliers can introduce bias to the 
rediction model in statistical learning ( 25 ), and obtained 

endability of 264 860 DNA duplexes as DNABend dataset. 
e then split the dataset into 70% training, 20% valida- 

ion and 10% hold-out test sets to train our model. Bend- 
et learns the optimal ar chitectur e by using a genetic algo- 

ithm ( 26 ) proposed by Mitchell in training and validation 

ets (Supplementary Figure 1A–C), and achie v es Pearson 

orrelation between our predictions and experimental mea- 
urements of 0.793 in the test set (Figure 1 B, C). We com-
ared BendNet to other state-of-the-art machine learning 

nd deep learning models including Random Forest (RF) 
 27 ), Support Vector Regression (SVR) ( 28 ), AlexNet ( 29 ),
esNet ( 30 ), GoogleNet ( 31 ), VGG ( 32 ), DNAcycP ( 33 )
nd DeepBend ( 34 ). BendNet outperforms all other models 
n terms of prediction accuracy (Figure 1 D), in the mean- 
hile, it is the fastest deep learning model in both training 

nd inference processes, which saves 38% training time and 

5% inference time than the second fastest model (Supple- 
entary Figure 1D). Additionally, we conducted an unbi- 

sed comparison between BendNet (before hyperparameter 
ptimization) and six other deep learning models. BendNet 
till outperformed the other models on both the test set and 

xternal dataset ( 13 ) (Supplementary Figure 1E, F). 
To demonstrate the potential of BendNet in uncover- 

ng biological discoveries, we held out one of the fiv e inde- 
endent experimental datasets which contain bendability of 
NA duplexes tiling the chromosome V of yeast genome in 

-bp resolution as a test set, and trained another BendNet 
odel. The model achie v ed a correlation of 0.757 between 

he predicted values and the actual values (Supplementary 

igure 1G, H). A visualization on chromosome V depicts an 

verall high agreement between BendNet predictions and 

oop-seq measurements (Figure 2 A). BendNet predictions 
re as sensiti v e as loop-seq measurements in detecting DNA 

endability in individual r egions (Figur e 2 A), and success- 
ully uncovered the previous observation of low DNA bend- 
bility within nucleosome-depleted regions (NDRs) ( 8 ). 

To demonstrate the generalization of BendNet, we col- 
ected the intrinsic cyclizability of DNA duplexes measured 

y three distinct low-throughput experimental assays and 

oop-seq. The measurements include relati v e ionization mo- 
ilities of 9 data points of a CTCF binding region in Gal- 

us gallus ( 35 ), relati v e lengths (RL) of 56 DNA duplexes in
. coli ( 12 ), Rbound / Rfree ratios of 35 DNA duplexes in
uman ( 36 ) and bendability of over 90 000 DNA duplexes 
f the mouse genome measured by loop-seq ( 13 ). Although 

ased on distinct protocols and performed on sequences 
rom different species, predictions by BendNet show an 

verall high consistency with the above experimental mea- 
ur ements (Figur e 2 B–D, Supplementary Figur e 1I). In par- 
icular, BendNet achie v es Pearson correlations of 0.773 for 
he E. coli dataset, 0.654 for the human dataset and 0.762 for 
he mouse dataset. There results demonstra ted tha t Bend- 
et is an accura te, computa tionally ef ficient and generaliz- 

ble model suitable for large-scale DNA bendability predic- 
ion tasks. 

endNet pr edicts base-r esolution DNA bendability in human 

o explore the role of DNA bendability in mammals, 
e applied BendNet to the human genome and obtained 

ase-r esolution bendability pr edictions in the genome scale. 
he bendability follows an a pproximatel y normal distribu- 

ion with negati v e ske wness (Supplementary Figure 2A), 
hich re v eals an ov er-r epr esentation of high bendabil- 

ty regions. This is probably due to a higher frequency 

f nucleosome-occupied r egions compar ed to NDRs in 

he human genome, as nucleosome-occupied regions are 
enerally more bendable than NDRs. To further clarify the 
attern of DNA bendability in different gene types, we ex- 
mined it at protein-coding genes (PCGs), long non-coding 

N As (lncRN As), non-coding RN As (ncRN As) and pseu- 

https://zenodo.org/deposit/7699690
https://zenodo.org/deposit/7663786
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Figure 1. Ov ervie w of BendNet, a m ulti-ca psule network for predicting bendability from DNA sequences. ( A ) Workflow of BendNet. DNA fragments of 
50 bp and their bendability measured by ‘loop-seq’ are used to train our model. All input DNA fragments are transformed into binary matrices by one-hot 
encoding scheme. BendNet starts with a convolutional module, which includes three consecuti v e convolutional b locks with different sizes and numbers of 
convolution kernels. After each convolutional block, there is a capsule block consisting of three layers (capsule, dropout and ba tch normaliza tion). Three 
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Consistency between true and predicted bendability on the hold-out test set. ( D ) Accuracy comparison of different models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad720/7269185 by N

ortheastern U
niversity user on 12 Septem

ber 2023
do genes. Generall y, we observed a clearly defined region of
rigid DNA (with low bendability) at both transcription start
sites (TSSs) (Figure 3 A) and transcription end sites (TESs)
(Figure 3 B). More specifically, PCGs exhibit the strongest
bendability drop that matches the nucleosome depletion at
both TSSs and TESs (Supplementary Figure 2B, C); lncR-
NAs show a weaker bendability decrease than PCGs, and
display a more obvious change in TESs than in TSSs which
coincides with the nucleosome depletion at TESs but not
TSSs; ncRNAs demonstrates an oscillatory bendability pat-
tern, with a notably low bendability at TESs which is as-
sociated with a decreased nucleosome occupancy; pseudo-
gene displays a minimal bendability change at both TSSs
and TESs. These results validate the previous finding of the
association between rigid DNA and nucleosome depletion
at TSSs, and demonstrate the same relationship at TESs by
analyzing distinct bendability patterns of four major gene
types. 

Effect of DNA bendability in TSS and TES regions 

We next sought to explore the effect of DNA bendabil-
ity on chromatin regulation at different gene promoters in
GM12878. We divided all PCGs into three equal groups
(rigid, intermediate and bendable) according to their aver-
age bendability at TSS –20 to +70 bp regions (Supplemen-
tary Figure 2D). Here ‘rigid’ represents DNA sequences
with low benda bility, ‘benda ble’ presents DNA sequences
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ith high bendability and ‘intermediate’ presents DNA 

equences with bendability in-between. For each group, 
 r epr esentati v e gene promoter is illustrated (Supplemen- 
ary Figure 2E). As expected, DNA bendability is posi- 
i v ely associated with nucleosome occupancy measured by 

Nase (Figure 3 C). By analyzing ATAC-seq and DNase- 
eq, we found rigid TSSs (with low bendability) are more 
ccessible (Supplementary Figure 2F, G) than bendable 
SSs (with high bendability). Moreover, the rigid TSSs 
re found to be enriched with the H3K79me2 ChIP-seq 

nd RN A pol ymerase II (Pol II) signals, which are associ- 
ted with transcriptional initiation and elongation, respec- 
i v ely (Supplementary Figure 2H, I). Consistent with this 
bservation, the histone modifications of transcriptional 
ctivation such as H3K4me3 and H3K27ac are enriched in 

igid TSSs (Supplementary Figure 2J, K), and DNA methy- 
ation is relati v ely low in rigid TSSs (Supplementary Fig- 
re 2L). These observations are consistent across different 
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Figure 3. Association between DNA bendability and functional elements in human genome. (A, B) The average bendability of protein-coding genes (PCGs), 
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cell types (Supplementary Figure 3A-T) indicating an in-
trinsic role of DNA mechanics in transcriptional control
through epigenetic regulations. In addition, we observed
that rigid TSSs ar e mor e conserved across species than
bendable TSSs (Figure 3 D) and are enriched for the house-
keeping genes (Figure 3 E), which suggests that rigid TSSs
are functionally essential during both evolution and cellular
de v elopment. 

It is worth noting that DNA bendability at TESs is not
associated with that at the same TSSs (Supplementary Fig-
ure 4A). Therefore, we performed the above analysis on
TESs without considering their bendability patterns at cor-
responding TSSs (Supplementary Figure 4B). As expected,
low nucleosome occupancy and DNA methylation are as-
sociated with rigid DNA at TESs (Supplementary Figure
4C, D). Howe v er, chromatin accessibility and histone acti-
vation marks are associated with bendable DNA at TESs
which is opposite to the observa tion a t TSSs (Supplemen-
tary Figure 4E–J), and its variation in bendability is not
due to the difference of the sequence conservation (Supple-
mentary Figure 4K). The greater reduction in bendability
at TES compared to that at TSS may be due to the AT-rich
sequences of polyAs (Supplementary Figure 4L). These re-
sults may suggest a different effect of DNA mechanics on
epigenetic regulation at TESs. 

Effect of DNA bendability in G4 structure 

G4 (G-quadruplex) structure is a DNA secondary structure
frequently found in the human genome, and plays an impor-
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ant role in genomic instability ( 37 ). To investigate whether 
4 structures are associated with DNA bendability, we an- 

l yzed the DN A bendability of G4 sequences in the human 

enome. We found an enrichment of bendable DNA at the 
enter of G4 sequences (Figure 3 F). G4 sequences are con- 
idered to form knot-like folding structures through Hoog- 
teen hydrogen bonding of four guanines ( 38 ) both in vivo 

nd in vitro , and as a result are more bendable than their 
urrounding regions. 

ffect of DNA bendability on replication timing 

ukaryotic genomes undergo replication in a specific order 
nd timing. Various origins along the chromosomes start 
o replica te a t specific times during cell division. This pro- 
ess is known as the replication timing program. Howe v er, it 
s still unclear to what extent replication initiation sites are 
etermined by local sequences ( 39 ). To investigate whether 
NA bendability plays a role in replication origins, we an- 

l yzed DN A bendability a t various replica tion timing re- 
ions on a genome-wide scale. Our analysis showed that 
he DNA bendability is highly correlated with replication 

iming across multiple cell lines (Figure 3 G, Supplementary 

igure 4M, N). These results suggest a potential role of in- 
rinsic DNA properties, such as DNA bendability, in regu- 
ating the replication timing program. 

NA bendability in disease associated regulatory regions 

arge scale epigenomic study re v eals that regulatory regions 
re enriched in disease-associated traits ( 40 ). Ther efor e, we 
nvestigated if the bendability of a DNA fragment (200 

p) is associated with the frequency of disease-associated 

ariants. We found that DNA bendability is positi v ely as- 
ociated with the frequency of the single nucleotide poly- 
orphisms (SNPs) in the genome-wide association studies 

GWAS) catalog ( 21 ) ( R = 0.788, Figure 3 H). This finding
till holds after correcting for the total number of SNPs in 

he relevant regions ( R = 0.666, Supplementary Figure 4O) 
r taking significant le v els of GWAS SNPs into considera- 
ion (R = 0.731, Supplementary Figure 4P). There analy- 
es suggest DNA intrinsic property may play an important 
ole in establishing functional genomic regions in human. 
o gain further insights into the effect of DNA bendabil- 

ty on broad regulatory regions, we calculated the average 
endability of 15 chroma tin sta tes defined by chromHMM 

n GM12878 ( 20 ). Functional r egulatory r egions such as 
nhancer r egions ar e generally mor e bendable than hete- 
 ochr omatin and Quiescent / Low regions (Figure 3 I). The 
ame pattern was also observed in three other cell lines 
Supplementary Figure 4Q). 

ffect of DNA bendability in enhancer regions 

nhancers are key regulatory elements that play an im- 
ortant role in tissue de v elopment and diseases. Enhancers 
emonstrate a clear decrease of DNA bendability at the 
entral r egion (Figur e 4 A). Inter estingly, we observed a 

tronger correlation between DNA bendability and GC 

ontent in enhancers (Figure 4 B, R = 0.431) than in ran- 
om genomic regions (Figure 4 C, R = 0.309). We per- 
ormed motif analysis on enhancer sequences with the high- 
st (top 0.5%) and lowest (bottom 0.5%) bendability by 

sing HOMER ( 41 ). Rigid enhancers are enriched with 

T-rich transcription factor (TF) binding motifs, such as 
EM19, RLR1 and Fra1 (Figure 4 D); while bendable en- 
ancers are enriched with GC-rich TF binding motifs, such 

s ZNF341, Etv2 and ERG (Figure 4 E). The above re- 
ults prompt an intrinsic role of GC content in determin- 
ng DNA bendability in regulatory regions. Therefore, we 
xtended our analysis to 15 chromatin states defined by 

hromHMM in GM12878 ( 42 ), and observed the highest 
orrelation ( R = 0.351) between GC content and bendabil- 
ty in Flanking Bivalent TSS / Enh, and lowest correlation 

 R = 0.231) in Bivalent Enhancer (Figure 4 F). These find- 
ngs are consistent across cell lines (Supplementary Figure 
R). 

ffect of DNA bendability on TF binding 

ext, we sought to investigate the effect of DNA bendabil- 
ty on transcription factor (TF) binding. By analyzing the 
hIP-seq data of 152 TFs in GM12878 from ENCODE 

 43 ), we found distinct bendability patterns in TF binding 

ites, quantified by the Pearson correlation between the av- 
rage profile of bendability and the ChIP-seq signal at TF 

inding r egions (Figur e 5 A, top). At the TF binding sites 
ompared to the surrounding regions, o ver tw o thirds of 
Fs such as CREB1 exhibit depressed benda bility, a bout 
ne third of TFs such as CTCF display elevated bendability, 
nd some TFs in between such as STAT5A show no clear 
endability pattern (Figure 5 B, Supplementary Figure 5A). 
e also tried another measurement of TF binding strength 

y measuring the bendability height in the TF binding re- 
ions, and obtained similar results (Figure 5 A bottom). 

We then performed GO enrichment analysis ( 44 , 45 ) 
nd pr otein-pr otein interaction (PPI) ( 46 ) network analy- 
is on TFs with rigid ( R ≤ –0.3 in Figure 5 A) and bend-
ble ( R > 0.3 in Figure 5 A) binding sites. We found that
Fs with rigid binding sites are enriched in transcrip- 

ion regulator complex, nuclear chromosome and trans- 
erase complex (Supplementary Figure 5B), while TFs with 

endable binding sites are enriched for cohesion complex, 
ondensed chromosome, transcriptional r epr essor com- 
lex and SWI / SNF superfamily-type complexes (Supple- 
entary Figure 5C). 
To further explore the effect of bendability on the binding 

trength of individual TFs, we obtained binding peaks with 

he top and bottom quarters of ChIP-seq signals, and in- 
estigated the bendability difference between them for each 

f the 152 TFs. We found that strong binding peaks exhib- 
ted lower bendability than weak peaks for TFs with over- 
ll rigid binding sites such as CREB1 and ZNF24, and re- 
ersed patterns for TFs with overall bendable binding sites 
uch as SMC3 and CT CF (Figur e 5 C). These findings in- 
icate the complex role of DNA mechanics in determining 

he TF binding strength. 
Next, we sought to investigate the functional role of DNA 

endability for TFs with overall rigid binding sites, which 

re mostly located in the promoter r egions (Figur e 5 A). 
ost TFs regulate gene expression through binding and co- 

inding to cis- regulatory elements. It is well accepted that 
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Figur e 4. DN A bendability in enhancer regions and its association with GC content. ( A ) The average bendability of enhancer and super-enhancer regions. 
(B , C) Associa tions between GC content and average bendability of enhancer ( B ) and random sequences ( C ) in the human genome. (D, E) Top three motifs 
of rigid ( D ) and bendable enhancers ( E ) by using HOMER. ( F ) Correlation between GC content and bendability of 15 chromatin states in GM12878. 
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sequence motif is critical but not e xclusi v e for TF binding.
W ha t other DNA properties contribute to the TF bind-
ing remains elusi v e. Here, w e show ed that the TF bind-
ing and co-binding are influenced by the intrinsic bend-
ability of DNA. Specifically, we observed more binding
and co-binding sites for all 152 tested TFs at rigid TSSs
than bendable TSSs (Supplementary Figure 6A, B). These
findings suggest the critical role of DNA bendability in
both TF binding and co-binding, and may serve as an in-
trinsic regulator of gene transcription other than sequence
motifs. 
 

Competition between nucleosome and TFs at bendable DNAs

We then sought to investigate the functional implication
of DNA bendability for TFs with ov erall bendab le binding
sites (Figure 5 A and Supplementary Figure 6C–K). These
TFs are mostly involved in 3D genome folding and co-
bind with CTCF, including CTCF itself, cohesin subunits
RAD21 and SMC3, and regulators of promoter-enhancer
loops –– YY1 and ZNF143. Further analyses demonstrate
CTCF binding sites (CBSs) exhibit the strongest bendabil-
ity peaks (Figure 5 D, Supplementary Figure 6L–N), while
bendability peaks of the other four factors are due to their
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Figure 5. Sequence effect of DNA bendability on TF binding. ( A ) Correlations between bendability and ChIP-seq signals of 152 TFs in GM12878 cell line 
(top). Relati v e bendability is calculated as the difference between average bendability in the peak central ±100 bp region and average bendability in the 
surrounding regions (–500 bp to –100 bp and +100 bp to +500 bp) (bottom). KAT2A has only 11 ChIP-seq peaks in the GM12878 cell line, resulting in 
significant da ta fluctua tions. ( B ) The average bendability of thr ee r epr esentati v e TFs (CTCF, STAT5A and CREB1) showing positi v e, weak and negati v e 
correlations to their ChIP-seq signals at the binding sites. ( C ) The bendability of weak and strong peaks in four TFs (SMC3, CTCF, ZNF24 and CREB1). 
Weak and strong peaks refer to ChIP-seq peaks with 25% lowest and 25% highest ChIP-seq signals, respecti v ely. The lower and upper hinges of the 
box es r epr esent the first and third quantiles, the whiskers extend 1.5 times the interquartile range from the hinges and the line r epr esents the median. (D, 
E) Average bendability in binding sites of CTCF (dark blue), EBF1 ( D ) and RAD21 ( E ) (yellow), and their co-binding sites (sky blue). ( F ) Bendability 
changes after in silico mutagenesis of 840 TF motifs (left) and their original values (right). ( G ) Three groups of motifs, indicated increased bendability 
change ( � bendability > 0.01 & P -value < 0.001), decreased bendability change ( � bendability < -0.01 & P -value < 0.001) and no significant change. ( H ) 
Bendability changes (predicted disruption) after in silico mutagenesis of CTCF / CREB1 motifs and random sequences. 
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overlapping with CBSs (Figure 5 E, Supplementary Figure
6O–Q), which underlines the central role of CTCF in reg-
ulating 3D genome organization through DNA bendabil-
ity. Consistent with this observation, there is a well-defined
NDR region at the CBS with up- and down-stream nu-
cleosomes aligned accordingly, but much weaker patterns
for the binding sites of the other factors (Supplementary
Figure 7A–D). Moreover, we observed that CBSs without
CTCF binding in specific cell lines are occupied by nucle-
osomes. More specifically, we investigated the MNase-seq
signal in CBSs with or without actual CTCF binding in
GM12878 cells. The latter exhibits a clear nucleosome oc-
cupancy signal, while the former does not (Supplementary
Figure 7E–G). This m utuall y e xclusi v e pattern is also ob-
served in the other 3 tested cell lines (Supplementary Figure
7H-J), indicating the role of CTCF to compete with nucleo-
some proteins in binding to the specific bendable regions.
This phenomenon suggests a mechanism that the CTCF
and its bendable binding elements cooperate to form the
anchor points in the loop formation process, because the
sharply defined bendable regions in the CBSs can facilitate
attracting and capturing CTCF to form accurate and stable
boundaries. 

Except for the above genome folding factors, four other
TFs, i.e. EBF1, EGR1, MAZ and MEF2B also show over-
all bendable binding sites (Supplementary Figure 6D, E, H,
I), which are not due to the overlap with CBSs (Figure 5 D,
Supplementary Figure 6L–N). By exploring the MNase-seq
data, we found CREB1, MAZ and EGR1 (Supplementary
Figure 7K–M), similar to CTCF, show a well-defined NDR
at their binding sites, while EBF1 (Supplementary Figure
7N) and MEF2B (Supplementary Figure 7O) binding sites
exhibit a near random nucleosome-occupied pattern sug-
gesting their bindings do not reply on nucleosome deple-
tion. Both genes are B cell-specific regulators, and EBF1
is a pioneer factor that can directly bind DNA with nu-
cleosomes, ther efor e demonstrating an association between
bendable DNA and nucleosome independent TF binding.
These findings indicate that genome folding factors and
some cell-specific regulators bind to bendable regions that
have to compete with nucleosome proteins, and these fac-
tors are functionally distinct compared to the typical TFs
with rigid DNA binding sites leading to intrinsically block
of nucleosome occupancy. 

BendNet predicts nucleotide-level DNA bending features of
TF motifs 

To screen for single nucleotide variations at TF binding
sites that lead to local DNA bendability remodeling, we
performed in silico sa tura tion mutagenesis of 50 bp re-
gions centered at 840 TF motifs and random sequences, and
quantified the predicted DNA bendability disruptions for
mutations to individual nucleotides. Predicted disruptions
of motifs show a negati v e correlation with their original
benda bility. After mutagenesis, the benda bility of the motifs
tends to r egr ess to the genome background (Figur e 5 F). In
particular, pr edicted disruptions ar e larger for nucleotides
around the motifs than in the flanking regions, with specific
vital nucleotides for different motifs (Figure 5 F, G). For in-
stance, predicted disruptions of the CTCF motifs show a
strong bendability decrease at the motif centers, specifically
at positions -1 and + 1, which contrasts with the elevation
of bendability at the original motif sequences (Figure 5 H).
Predicted disruptions of the CREB1 motifs, on the other
hand, exhibit a strong bendability increase at the motif cen-
ters, specifically at positions –1 and + 3, which contrasts
with the dip of bendability at the original motif sequences
(Figure 5 H). These analyses indicate that BendNet predicts
base-resolution DNA bending features of TF motifs, and
that key motif nucleotides impacting DNA bending remain
uncharacterized. 

DNA bendability of human eccDNA 

Extrachromosomal circular DN A (eccDN A) is a type of
double-stranded loop-sha ped DN A derived from genomic
DNA. It has been observed in di v erse cell types across dif-
ferent species ( 17 ), but its biogenesis is largely unknown.
Here, we collected 423 018 human eccDNA fragments with
lengths of < 1000 bp and observed their sequences are sig-
nificantly bendable compared to the genomic background
(Figur e 6 A). Ther e is no clear bendability difference among
eccDNAs generated from different genomic regions (Figure
6 A). These findings suggest that DNA mechanical proper-
ties may contribute to the generation of eccDNA, which is
independent of sequence locations. 

Resource of DNA bendability in 307 species 

Taking advantage of BendNet in its potential for cross-
species prediction, we computed base-resolution genomic
bendability profiles of 307 species (Supplementary Table 1).
To investigate the relationship between DNA bendability
and species evolution, we calculated the average bendability
of each species in four classes of vertebrates (Actinopteri:
n = 83, Aves: n = 48, Lepidosauria: n = 10, Mammalia:
n = 120). Aves (birds) demonstrates the highest DNA bend-
ability (–0.0726), Actinopteri (fish) the lowest (–0.0972) and
Mammalia in between (–0.0837) (Figure 6 B). In model
species, Mus musculus exhibits the highest average bend-
ability of –0.0776, while Caenorhabditis elegans displays the
lowest average bendability of –0.1995 (Figure 6 C). 

Webserver of BendNet 

To facilitate the easy access of the large r esour ce of
DNA bendability in model species, we de v eloped a w e b-
server ( http://www.dnabendnet.com/ ) (Figure 6 D). Users
can query one or multiple genomic region(s) in the database
to obtain the average profile and heatmap of individual
regions of DNA bendability (Figure 6 E). This function
can assist users to obtain the DNA bendability pattern of
the genomic regions of interest obtained from ChIP-seq,
ATAC-seq, etc. Users can also query one or multiple DNA
sequences to obtain their bendability in newly sequenced
species or sequence variations, such as SNPs and somatic
mutations (Figure 6 F). Furthermore, our w e bsite provides
predicted bendability disruptions resulting from in silico
mutagenesis on 840 TF motifs. Users can query individual
motif IDs or gene symbols to access this information. 

http://www.dnabendnet.com/
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A B

C

D

E F

Figur e 6. DN A bendability distributions of eccDN A, w hole genomes of 307 species and online w e bserver. ( A ) The bendability of random genomic segments, 
eccDNAs and fiv e types of eccDNA with different origins. ( B ) The average bendability of four classes of vertebrates (Actinopteri: n = 83, Aves: n = 48, 
Lepidosauria: n = 10, Mammalia: n = 120) in the genome scale. ( C ) Genome-wide DNA bendability of 10 species. ( D ) The interface of the BendNet 
w e bserver. Users could either input genomic positions of existing species in bed / bed f ormat, or an y new sequences in fasta format or raw read. (E, F) 
Outputs of BendNet server when inputting genomic regions in bed format ( E ) or raw DNA sequences ( F ) . 
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DISCUSSION 

Decoding DNA mechanics and its effect on chromatin reg-
ulation is one of the fundamental questions in genomics.
Our work provides a tool to assess bendability, one of the
mechanical properties of DNA, for massi v e-scale DNA se-
quences to study their biological consequences. Our data
provide a base-resolution map of DNA bendability predic-
tions in human, which expands our knowledge of how DNA
mechanics influence chromatin regulation through DNA-
macromolecular interactions. We also provide genome scale
bendability predictions for 307 species as a comprehensi v e
r esour ce, along with a w e bserver to query some of the model
species. By using these, r esear chers could study the varia-
tion of DNA bendability during evolution and its effect on
gene regulation and function. The w e bserver could be used
to investigate the effect of DNA bendability on di v erse bio-
logical systems, such as nucleosome assembly during DNA
replication, genome stability maintenance, epigenetic inher-
itance, DNA damage repair, and V(D)J recombination in
B- or T-cell de v elopment. Furthermore, our frame wor k can
be easily applied to assess other DNA mechanics, such as
DNA twisting, supercoiling and torsional rigidity, when
enough experimental measurement data are available, and a
multi-task learning strategy could further improve the pre-
diction accuracy. The current BendNet model is built upon
in vitro data that lacks conditional information, such as cell
type and tissue specificity. Howe v er, de v eloping e xperimen-
tal strategies to measure in vivo DNA mechanics could ad-
dress this limitation in the future. 

DA T A A V AILABILITY 

ChIP-seq of 152 TFs, ATAC-seq, DNase-seq, MNase-
seq, H3K4me3, H3K27ac, H3K79me2 and POLR2A
in GM12878 were obtained from Encode w e bsite
( https://www.encodeproject.org/ ). The bendability
r esour ce for 307 species at a resolution of 10 can
be found at ( https://zenodo.org/deposit/7699690 and
https://zenodo.org/deposit/7663786 ). 

CODE A V AILABILITY 

BendNet is freely available at ( https://github.com/
JiangWenJie-stack/DNABendNet ) and ( https:
//zenodo.org/record/8218189 ). The w e bserver is at
http://www.dnabendnet.com/ . 
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Supplementary Data are available at NAR Online. 
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