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Abstract

Identifying cell clusters is a critical step for single-cell transcriptomics study. Despite the

numerous clustering tools developed recently, the rapid growth of scRNA-seq volumes

prompts for a more (computationally) efficient clustering method. Here, we introduce

Secuer, a Scalable and Efficient speCtral clUstERing algorithm for scRNA-seq data. By

employing an anchor-based bipartite graph representation algorithm, Secuer enjoys

reduced runtime and memory usage over one order of magnitude for datasets with more

than 1 million cells. Meanwhile, Secuer also achieves better or comparable accuracy than

competing methods in small and moderate benchmark datasets. Furthermore, we show-

case that Secuer can also serve as a building block for a new consensus clustering method,

Secuer-consensus, which again improves the runtime and scalability of state-of-the-art con-

sensus clustering methods while also maintaining the accuracy. Overall, Secuer is a versa-

tile, accurate, and scalable clustering framework suitable for small to ultra-large single-cell

clustering tasks.

Author summary

Recently, single-cell RNA sequencing (scRNA-seq) has enabled profiling of thousands to

millions of cells, spurring the development of efficient clustering algorithms for large or

ultra-large datasets. In this work, we developed an ultrafast clustering method, Secuer, for

small to ultra-large scRNA-seq data. Using simulation and real datasets, we demonstrated

that Secuer yields high accuracy, while saving runtime and memory usage by orders of

magnitude, and that it can be efficiently scaled up to ultra-large datasets. Additionally,

with Secuer as a subroutine, we proposed Secuer-consensus, a consensus clustering algo-

rithm. Our results show that Secuer-consensus performs better in terms of clustering

accuracy and runtime.
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Introduction

In the past decade, single-cell RNA sequencing (scRNA-seq) has transformed our understand-

ing of development and disease through profiling the whole transcriptome at the cellular level

[1,2]. It has been widely used to unravel cell-to-cell heterogeneity and gain new biological

insights, owing to its ability to identify and characterize cell types in complex tissues [3]. Unsu-

pervised clustering approaches have played a central role in determining cell types. However,

the scale of scRNA-seq experiments has been rapidly climbing in recent years, amounting to

several datasets profiling over 1 million cells [4–6]. The increasing sample size renders many

of the existing scRNA-seq clustering algorithms obsolete and prompts for developing a new

generation of clustering algorithms that are efficient and scalable to large (500,000 ~ 5 million

cells) or even ultra-large (> 5 million cells) scRNA-seq datasets.

Currently, two clustering algorithms, Louvain and Leiden, prevail in scRNA-seq analysis and

have recently been implemented in numerous tools such as Seurat [7] and Scanpy [8]. Both algo-

rithms aim to partition a graph into connected subgraphs by iteratively aggregating nodes: Lou-

vain infers clusters by maximizing modularity [9], and Leiden is a variant of Louvain by using a

local node-moving technique [10]. However, both algorithms are not well scaled to ultra-large

datasets. For instance, for a dataset consisting of 10 million cells, Louvain and Leiden usually take

45 minutes and more than 1 hour for clustering, and both unreliably and unreasonably overesti-

mate the number of clusters (as many as 1 million, see details in the Results section).

To address this gap, we present Secuer, a superfast and scalable clustering algorithm for

(ultra-)large scRNA-seq data analysis based on spectral clustering. Spectral clustering has been

one of the most popular clustering techniques due to its ease of use and flexibility of handling

data with complicated shape or distribution [11], but with the caveat of high computational

cost. We tailor the conventional spectral clustering to large scRNA-seq data based on an idea

of representative/landmark selection in U-SPEC [12–14], leveraging the following three key

elements in Secuer: First, we pivot p anchors from all N cells (p�N) and construct a weighted

bipartite graph between cells and anchors by a modified approximate k-nearest neighbor

(MAKNN) algorithm, which greatly accelerates the runtime of our method. Second, we deter-

mine the weights of the bipartite graph by a locally scaled Gaussian kernel function to capture

the local geometry of the cell-to-anchor similarity network, which improves the accuracy of

our method. Third, we design two optional approaches to automatically infer the number of

clusters—K, which avoids manually choosing some K by users.

We evaluate Secuer against three extensively used methods for scRNA-seq clustering

including Louvain, Leiden, and k-means, using 31 simulated datasets with the number of cells

ranging from 10,000 to 40 million. Secuer utilizes much shorter runtime than existing methods

without deteriorating the clustering accuracy. In particular, Secuer is 5 times faster than k-

means and 12 times faster than Louvain/Leiden for ultra-large datasets. Moreover, Secuer

infers the number of clusters in the anchor space. The cluster number estimates by Secuer are

still accurate when the sample size is larger than 5 million, in which case both Louvain and Lei-

den fail to produce any reasonable estimates. We then evaluate all the aforementioned meth-

ods in 15 real datasets with the number of cells ranging from 49 to 1.46 million (S1 Table), and

find that Secuer yields more or comparably accurate clustering results than the other methods,

and saves 90% of runtime in general.
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tree/master/data), TAM FACS (https://figshare.

com/projects/Tabula_Muris_Senis/64982), MCA
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acc=GSE158055). Python implementation of

Secuer is available on GitHub (https://github.com/

nanawei11/Secuer).
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With Secuer as a subroutine, we also develop a consensus clustering method, Secuer-con-

sensus, by aggregating multiple clustering results obtained by Secuer to further boost cluster-

ing accuracy and stability. Compared to the popular consensus clustering algorithm SC3 [15],

Secuer-consensus attains better clustering accuracy on 14 benchmark datasets, is in general

100 times faster, and can work on large datasets in which SC3 even fails to produce any useful

output. Compared to Specter [16], another consensus clustering method for large-scale

scRNA-seq data published recently, Secuer-consensus shows superior performance in both

accuracy and speed on large datasets. In summary, Secuer and Secuer-consensus are accurate

and scalable algorithms that provide a general framework for efficient (consensus) clustering

of small to ultra-large scRNA-seq datasets that are being produced by a growing array of single

cell transcriptomic projects.

Results

Overview of Secuer

The workflow of Secuer is illustrated in Fig 1. To improve computational efficiency, Secuer

starts by randomly sampling a subset of p0 (10,000 by default) cells from all N cells (Fig 1A and

1B). p anchors are then obtained, which are the centroids of the identified clusters by applying

k-means to the above random subsample (Fig 1B). Next the k-nearest anchors of all cells are

determined by the MAKNN algorithm (Fig 1C). Then, a weighted bipartite graph between

anchors and cells is constructed, with similarities between anchors and cells quantified by a

locally scaled Gaussian kernel that the bandwidth parameter of each cell is defined as the

Fig 1. Overview of the Secuer algorithm. (A) Secuer takes the matrix in which rows are cells and columns are features as input. (B) Secuer obtains p anchors

(red points) by using k-means on a random subset of p0 cells from all N cells (blue points). (C) The MAKNN algorithm step aims to find the k nearest anchors

for each cell (green points). (D) A weighted bipartite graph is constructed, with nodes representing cells (donated as x) and anchors (donated as r) and weights

computed by a locally scaled Gaussian kernel distance. (E) Secuer applies k-means to the eigenvectors of the graph Laplacian of the weighted bipartite graph to

obtain the final clustering results. (F) Secuer estimates the number of clusters based on the graph of the anchors or based on the eigenvalues of the graph

Laplacian of the weighted bipartite graph of cells and anchors.

https://doi.org/10.1371/journal.pcbi.1010753.g001

PLOS COMPUTATIONAL BIOLOGY Ultrafast clustering of single-cell RNA-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010753 December 5, 2022 3 / 20

https://doi.org/10.1371/journal.pcbi.1010753.g001
https://doi.org/10.1371/journal.pcbi.1010753


average distance between the cell and its k nearest neighbor anchors, to better capture the local

geometry of the gene expression landscape (Fig 1D). Finally, we compute the first K eigenvec-

tors of the graph Laplacian by transfer cuts (T-cut) algorithm [17] and obtain the final cluster-

ing results by off-the-shelf clustering algorithms such as k-means (by default) (Fig 1E). Secuer

also automatically infers the number of clusters by either applying a community detection-

based technique on the graph of the anchors (by default) (Fig 1F), or using the number of

near-zero eigenvalues of the graph Laplacian (see Materials and Methods) [11].

We observed that the locally scaled Gaussian kernel is better suited to model certain

scRNA-seq data than the non-locally scaled Gaussian kernel used in U-SPEC [12] (S1 Fig). In

addition, we studied how two important tuning parameters– p (the number of anchors) and k
(the number of nearest neighbors in MAKNN)–affected the clustering results in Secuer, and

found that p = 1000 and k = 7 produced superior results (S2 Fig), which are therefore recom-

mended as the default values when implementing Secuer.

Secuer performance on simulated datasets

Clustering ultra-large scRNA-seq datasets is computationally intensive in terms of both run-

time and memory usage. We generated a series of scRNA-seq datasets with an increasing num-

ber of cells ranging from 10,000 to 40 million (see Materials and Methods) to test the

performance of Secuer and three widely used clustering methods: k-means, Louvain and Lei-

den. The number of clusters is determined by the default parameters except for k-means. For

the ease of comparison, the reference/ground-truth (see Materials and Methods) number of

clusters are given to k-means as input. The clustering accuracy is measured by the Adjusted

Rand Index (ARI) [18] and the Normalized Mutual Information (NMI) [19].

First, we compared the runtimes of different methods. Secuer is the fastest on large and

ultra-large datasets, in particular for ultra-large datasets, where Secuer is 5 times faster than k-

means, and 12 times faster than Louvain/Leiden. Though k-means is faster for small datasets,

the runtime only differs slightly from Secuer (below 10 seconds) (Fig 2A). In contrast, Louvain

and Leiden are much slower than Secuer and k-means when applied to datasets over all scales,

and fail to process the datasets of more than 10 million cells. Note the runtime of Louvain and

Leiden does not monotonically increase with the sample size, possibly due to the much higher

number of estimated clusters for larger datasets (Fig 2C). We then investigated the memory

Fig 2. The performance of different methods on the simulated datasets. (A) The clustering runtime vs. the number of cells in the simulated datasets for all

four methods. (B) The memory usage vs. the number of cells in the simulated datasets for all four methods. (C) The estimated number of clusters vs. the

number of cells in the simulated datasets for three out of four methods: Secuer, Louvain and Leiden. k: thousand, M: million.

https://doi.org/10.1371/journal.pcbi.1010753.g002
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usage of different methods. We observed that Secuer and k-means consume the least amount

of memory in all datasets. In comparison to Louvain and Leiden, Secuer only requires one-

tenth of their memory usage when the sample size is over 1 million (Fig 2B). We also evaluated

the clustering accuracy of all the methods and found that they all performed similarly when

the sample sizes are less than 5 million. However, Louvain and Leiden performed poorly when

there are more than 5 million cells, suggesting that they should not be applied directly to ultra-

large datasets, even without concerning the computational cost (S3A Fig).

Next, we investigated the accuracy of Secuer in inferring the number of clusters (K). We set

the true K = 19 across all simulated datasets over different sample sizes (see Materials and

Methods). Fig 2C displays the number of clusters identified by Secuer, Louvain and Leiden,

with sample sizes varying from 10,000 to 40 million. The numbers of clusters estimated by

Secuer only fluctuate mildly around 18 across different simulations. However, neither Louvain

nor Leiden can infer K correctly in ultra-large datasets when the number of cells is over 5 mil-

lion (Fig 2C). Notably, the estimated numbers of clusters by Louvain and Leiden are enor-

mously upwardly biased, and such a bias cannot be easily fixed by simply lowering the

resolution parameter to even 0.0001 (S3B Fig). This further suggests that Secuer should be

favored over Louvain and Leiden when analyzing large to ultra-large datasets.

Finally, we compared Secuer with the vanilla spectral clustering algorithms (VSC), espe-

cially in runtime. To this end, we divided the clustering procedure into three steps: construct-

ing weighted bipartite graph, solving the eigen-problem, and the final clustering. We

investigated the runtime of each step between Secuer and VSC. Secuer has significantly

reduced runtime on the graph construction step in larger datasets and the eigen-solving step

in datasets over all scales, due to the use of the T-cut algorithm on the anchor-based bipartite

graph (S3C and S3D Fig, see Materials and Methods).

Secuer performance on large real datasets

To evaluate the performance of our method on large real datasets, we collected three scRNA-

seq datasets recently reported: COVID19 dataset profiling 1.46 million immune cells isolated

from 196 patients; MCA dataset containing 325,486 cells from multiple major mouse organs;

and Mouse brain dataset consisting of over 1 million cells from two E18 mice. For each dataset,

we performed all clustering methods 10 times and reported the average runtimes and cluster-

ing accuracy.

Secuer has the shortest runtime on all datasets (Fig 3A). In particular, for the COVID19

dataset with more than 1 million cells, the runtime of Secuer is< 1 minute on average, which is

3 times faster than k-means, and 24 times faster than Louvain and Leiden. In the meanwhile,

Secuer achieves competitive accuracy in general compared to other methods measured by both

ARI (Fig 3B) and NMI (S4A Fig). An example of the clustering results by all methods are dis-

played in Uniform Manifold Approximation and Projection (UMAP) [20] visualization (Fig

3C–3I), in which the cell type labels are obtained from Xie et al. [21]. Under default parameters,

Secuer exhibits more apparent cell type separations than Louvain and Leiden, both of which

obtain 1.5 times more clusters showing ambiguous patterns, especially on the right region of the

plot with a lot of small clusters overlaying with each other (Fig 3D–3F). The performance of

Louvain and Leiden is improved when the number of clusters is tuned to be the same as that of

Secuer. However, by doing this they fail to distinguish the Interneurons (cluster 1 in Secuer)

and Neural stem/precursor cells (cluster 6 in Secuer) in the lower left corner of the plot (Fig 3G

and 3H). Likewise, k-means also fail to distinguish the two clusters even though the original

number of cell type labels is given (Fig 3I). Taken together, these findings demonstrate that

Secuer is an efficient and accurate algorithm for clustering large scRNA-seq datasets.
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Secuer performance on well-annotated benchmark datasets

To further investigate the performance of our method in small and moderate benchmark data-

sets, we applied the same analyses as above on six gold-standard and six-silver standard

scRNA-seq datasets introduced by SC3 [15], scDCC [22], and MARS [4]. These datasets, with

numbers of cells varying from 49 to 110,832, are widely used to benchmark the performance

of new clustering methods because the cell type labels with high confidence are available.

As expected, Secuer and k-means remain to have the shortest runtimes, which are at least

10 times faster than Louvain and Leiden across all 12 datasets (Fig 4A). In terms of accuracy,

Secuer outperforms Louvain and Leiden on 7 out of 12 datasets (mean ARI difference > 0.05),

and is substantially better on 4 out of 12 (Goolam, Biase, Human kidney and Mouse retina,

mean ARI difference > 0.2) (Fig 4B and 4C). The distribution of ARI across all datasets dem-

onstrates that Secuer is highly competitive even only in terms of clustering accuracy (Fig 4D).

Likewise, similar trends are observed when measuring accuracy using NMI (S4B–S4D Fig). k-

means sometimes achieves better accuracy than the other methods, but the clustering results

are exceedingly inconsistent across different initializations. For instance, the range of ARI in

different runs is 0.5 in the Biase dataset (Fig 4B). Furthermore, we found that k-means is sensi-

tive to changes in the data preprocessing pipelines. In most cases, the mean NMIs of k-means

with and without preprocessing step differ by a large margin, especially for Goolam and CITE

PBMC datasets (mean NMI difference > 0.5, S5 Fig). Using the Mouse retina dataset as an

example, The UMAP visualization suggests that the clusters inferred by Secuer are more

aligned with the given reference cell-type annotations (Fig 4E–4I), regarded as the ground

truth. Notably, cluster 1 identified by Secuer is perfectly matched with the reference cluster 5,

but none of the other approaches are capable of recovering this reference cluster. Finally, we

examined the accuracy of the estimated number of clusters by different methods on all 12 data-

sets and discovered that Secuer outperformed Louvain and Leiden (S6 Fig). These results dem-

onstrate that Secuer is also competitive in terms of clustering accuracy for small and moderate

scRNA-seq datasets.

Secuer-consensus performance on fourteen benchmark datasets

Most of the unsupervised clustering algorithms may yield inconsistent results due to random

initialization and different parameter settings. To resolve this common problem, consensus

clustering aggregates multiple outputs generated by different clustering algorithms or by the

same algorithm but with varied parameter settings, to produce consensus clusters that are

expected to be more stable and accurate [15,23]. Just as in the case of usual clustering, consen-

sus clustering method applicable to large-scale scRNA-seq data is also lacking. To bridge this

gap, with Secuer as a subroutine, we developed Secuer-consensus, a highly efficient consensus

clustering algorithm that ensembles multiple outputs of Secuer by fully taking advantage of its

computational efficiency. The implementation of Secuer-consensus constitutes three steps (Fig

5A): First, Secuer is run for M times with different distance metrics, including Euclidean and

cosine distances, and different numbers of clusters estimated by different parameter settings to

generate multiple clustering outputs. Second, an unweighted bipartite graph is constructed

from the multiple outputs. Third, k-means clustering is performed on the unweighted bipartite

graph (see Materials and Methods).

Fig 3. The performance of different methods on large real datasets. (A) The clustering time of different methods. (B) The ARI of different

methods on three large datasets. (C-I) UMAP visualization of the Mouse brain dataset for the different methods. Reference (C) illustrates the

ground-truth cell type labels obtained from the original study. Secuer (D), Louvain (E), and Leiden (F) display clustering results by using

their default parameters. Adjusted Louvain (G) and adjusted Leiden (H) refer to the clustering results by setting the resolution parameter to

0.3. k-means (I) represents the clustering results given the ground-truth number of clusters in (C).

https://doi.org/10.1371/journal.pcbi.1010753.g003
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We evaluated the performance of Secuer-consensus on 14 datasets, including 12 gold/silver

standard datasets and 2 million scale datasets, by comparing it to the original Secuer and two

consensus clustering methods SC3 and Specter. Specter requires the number of clusters as

input, which is provided by our method. We first studied how many clustering outputs of

Secuer (M) should be fed into Secuer-consensus and found that setting M between 5 and 10

has generally better performance (S7 Fig). Hence, we set M = 5 for all datasets hereafter. It can

be found that Secuer-consensus achieved similar runtime as Specter that is over 100 times

Fig 4. Performance of Secuer on twelve gold and silver standard datasets. (A) The clustering runtime of each method on all twelve datasets. (B-C) Accuracy

of different methods, including k-means, Louvain, Leiden, and Secuer, on gold (B) and silver (C) standard datasets. (D) A boxplot showing the distribution of

ARI of different methods on all datasets. (E-I) UMAP visualization of the ground-true cell type labels obtained from the original study, termed as reference (E)

and clustering results from four different methods (F-I) on Mouse retina dataset.

https://doi.org/10.1371/journal.pcbi.1010753.g004
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faster than SC3 in small and moderate datasets (Fig 5B). Despite suboptimal compared with

Specter on gold and some silver standard datasets, the runtime difference between Secuer-con-

sensus and Specter is less than 8 seconds on average. However, when sample size increases,

Secuer-consensus shows superior speed than Specter. In the case of processing million scale

single cell datasets, Secuer-consensus takes 86 seconds for Mouse dataset (N = 1,011,462) and

112 seconds for COVID19 dataset (N = 1,462,702), while Specter takes 15 minutes and 8.5

minutes, respectively. Furthermore, Secuer-consensus can be accelerated by using parallel

computation: for example, the average runtime is decreased by 50% on datasets with more

than 1 million cells using 3 cores (S8 Fig).

Regarding accuracy, Secuer-consensus is approaching or superior to Specter and SC3,

depending on the datasets. Specifically, Secuer-consensus surpasses SC3 on 9 out of 10 datasets

(SC3 failed to process the four larger datasets in our settings) and Specter on 7 out of 14 (mean

ARI difference > 0.05), while substantially outperforms SC3 on four datasets (Biase, Goolam,

Human kidney and CITE PBMC datasets, ARI difference > 0.2) and Specter on two datasets

(Goolam and Mouse datasets, ARI difference > 0.2) (Fig 5C). These findings indicate that

Fig 5. Overview of the Secuer-consensus algorithm and the performance on fourteen scRNA-seq datasets. (A) Secuer-consensus takes a matrix as input,

with genes as the columns and cells as the rows, executes Secuer M times to acquire multiple clustering outputs, and constructs an unweighted bipartite graph,

with two sets of nodes respectively representing the clusters (denoted as C) and cells (denoted as x). Finally, k-means clustering is used to obtain a consensus

grouping. (B) The clustering runtime for different methods. Secuer-C: short for Secuer-consensus. (C) The ARI for four methods on 14 benchmark datasets.

https://doi.org/10.1371/journal.pcbi.1010753.g005
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Secuer-consensus is an appealing option for consensus clustering small to large scRNA-seq

datasets.

Discussion

Identifying cell clusters is a critical step for scRNA-seq data analysis. Computationally efficient

and scalable methods are urgently needed due to the rapidly expanding volume of scRNA-seq

data. In this work, we presented Secuer, a computationally efficient, ultra-scalable and accurate

method for unsupervised clustering of scRNA-seq data. Secuer is on average 10 times faster

than Louvain and Leiden while exhibiting similar accuracy in 15 benchmark datasets, covering

different sequencing technologies, with the number of cells ranging from 49 to 1.4 million.

Secuer can efficiently scale to ultra-large scRNA-seq datasets of more than 10 million cells,

when neither Louvain nor Leiden is even able to process the data. For instance, Secuer can

cluster a scRNA-seq dataset of 10 million cells within 3 minutes, which is 6 times faster than k-

means, one of the most efficient off-the-shelf clustering algorithms. In addition, Secuer can

reliably estimate the number of clusters regardless of the number of cells in the data, whereas

both Louvain and Leiden usually erroneously identify > 0.9 million clusters for datasets with

over 5 million cells.

With Secuer as a subroutine, we also proposed a consensus clustering method, Secuer-con-

sensus, by aggregating multiple Secuer runs with an array of different parameter settings.

Secuer-consensus surpasses or approaches Secuer, SC3 and Specter in all 14 benchmark data-

sets. Notably, Secuer-consensus only takes less than 1% the runtime of SC3 for these datasets,

and 15% the runtime of Specter on the million datasets. By parallelizing the computation, our

method can further reduce runtime on large datasets. This allows Secuer-consensus to cluster

cell types with improved stability and accuracy compared to the non-consensus-based meth-

ods, while being substantially more efficient than competitive consensus clustering methods.

Overall, our new clustering framework strikes a good balance between accuracy, computa-

tional cost and scalability. It is an appealing choice for clustering large-scale scRNA-seq atlas, and

can also be easily incorporated into any online scRNA-seq computational platforms for real-time

analysis. The computational efficiency of Secuer also makes it a building block for scalable consen-

sus clustering, demonstrated by the superior performance of Secuer-consensus than other com-

peting methods. Secuer is also flexible enough to be adapted to a wide range of clustering

algorithms beyond spectral clustering, such as Louvain or upcoming new approaches, to enhance

their efficiency and scalability. As the rapid development of droplet-based single cell technologies,

we expect our framework can eventually be applied to identify cell clusters in large-scale omics

data other than scRNA-seq, such as scATAC-seq, CyTOF and image-based spatial data.

Materials and methods

Spectral clustering

Spectral clustering is a popular clustering algorithm originated in spectral graph theory [24].

Given a graph G = {X, E, S}, where X = {x1,. . .,xN} is a set of N data points and each xi is a d-

dimensional vector, E is a set of edges and S = [Sin]i,n = 1,2,. . .,N is a weighted adjacency or simi-

larity matrix, spectral clustering aims to divide the graph into connected subgraphs in which

the within-group edge weights are maximized while the between-group edge weights are mini-

mized. A typical spectral clustering algorithm constitutes the following main steps: 1) con-

structing an adjacency matrix S for data points based on certain distances (e.g., Euclidean,

cosine); 2) computing the graph Laplacian matrix, i.e., L = D−S, where D is the degree matrix

of the graph, a diagonal matrix with diagonal elements equal to the row sums of S; 3) calculat-

ing the eigenvectors corresponding to the K smallest eigenvalues of the (normalized) Laplacian
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and arranging them in a matrix V by columns; 4) clustering the row-normalized V into K
groups using conventional clustering algorithms, such as k-means or hierarchical clustering.

Spectral clustering has several variants by using different forms of the Laplacian matrix [11].

Among them, Normalized cut (Ncut) is the most widely adopted method [25].

Secuer

Our method is comprised of four steps: 1) identifying anchors; 2) estimating the number of

clusters; 3) applying the MAKNN algorithm to construct the bipartite graph between anchors

and cells; 4) partitioning the bipartite graph partitioning. Among them, the step of identifying

anchors to generate an adjacency matrix of cell-by-anchor to replace the original dense simi-

larity matrix is key for drastically improving the clustering runtime and memory usage. Given

a gene expression matrix X2RN×d, where N and d are, respectively, the number of cells and the

number of genes. The vanilla spectral clustering requires: 1) O(N2d) time to build the adja-

cency matrix and 2) O(N3) time to solve the eigen-problem [13]. In contrast, Secuer reduces

the time complexity to O Np1
2d

� �
in 1) by using the bipartite graph representation, and reduces

the time complexity to O(NK(K+k)+p3) in 2) by using transfer-cuts (T-cut) [12,17] on the

weighted bipartite graph to solve the eigen-problem, where k is the number of neighboring

anchors and K is the estimated number of cell clusters.

Identifying anchors

Given the gene expression matrix X = {xi}i = 1,..,N, where xi2Rd represents the expression pro-

file of one single cell, we selected p (default by 1,000) anchors to bypass computing the original

large and dense similarity matrix. The idea behind this step is to use a small set of landmark

points to approximately represent the underlying geometry of the data. In detail, we first ran-

domly selected p0 (default by 10p) candidate cells from all N cells such that p<p0�N, and then

group candidate cells into p clusters by k-means clustering. The final anchors are the centroids

of the p clusters, denoted as r = {r1, r2,. . .,rp}. Note that, for datasets with cells less than 10,000,

we applied k-means on the dataset directly to identify anchors.

Estimating the number of clusters

The number of clusters is usually given a priori for vanilla spectral clustering algorithms. However,

the true number of cell types is seldomly available in practice. In the current version of Secuer, we

implemented two approaches for estimating the number of clusters. Inspired by community-detec-

tion algorithms that infer the number of clusters using a resolution parameter, we constructed a

graph with only anchors as nodes and estimate the number of clusters by the community-detection-

based approach used in Louvain algorithm, which is also used as the default option in Secuer.

Another option is to use the bipartite graph between anchors and cells. It is proven that the

number of near-zero eigenvalues of the graph Laplacian matrix equals the number of the con-

nected components of the underlying graph [11]. Inspired by this fact, we designed an

approach consisting of the following five steps: 1) sorting the eigenvalues of the bipartite graph

Laplacian matrix in ascending order; 2) dividing all the eigenvalues into 100 equal-sized bins

H ¼ fðLu;RuÞju ¼ 1; 2; . . . ; 100g and count the number Cu of eigenvalues falling into each

bin; 3) computing the gap values Δ between consecutive bin pairs with Cu>0, denoted as

D ¼ fLu0þ1 � Ru0 ju0 : Cu0 > 0g, and identify the α-th greatest values Δα in Δ (with default value

set as α = 4 by empirical experience from simulations and data analysis); 4) determining the

bins with gap values greater than Δα and obtain u� ¼ argmaxu0 fRu0 jLu0þ1 � Ru0 > Dag; 5) esti-

mating the number of clusters by the number of eigenvalues falling into all bins with u�u�.
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The MAKNN algorithm

Given p anchors, we aimed to construct an N×p similarity matrix S between all N cells and p
anchors. However, this step can be computational expensive in terms of both runtime and

memory usage for ultra-large datasets. To alleviate this problem, we used a modified approxi-

mate KNN algorithm to improve the computational efficiency. For large datasets, instead of

building a large and dense adjacency matrix, the modified method aims to find k nearest

anchors approximately for each cell to build a sparse adjacency matrix of cell-to-anchor. Tak-

ing a cell xi as an example:

i. All p anchors are grouped into o clusters using k-means, denoted as ω1, ω2,. . .,ωo.

ii. Cell xi is then assigned to the closest cluster o
ðiÞ
l based on the Euclidean distance between

cell xi and all cluster centers.

iii. Find the nearest anchor of cell xi in o
ðiÞ
l denoted as p(i).

iv. Apply KNN to p anchors to obtain the k0 (default as 10×k) nearest neighbors of each

anchor such that k<k0.

v. Obtain the k nearest anchors of cell xi based on the Euclidean distance between xi and the k0

nearest anchors of p(i).

In the above steps, we only need to calculate the k0 nearest neighbors of p anchors. Then the

neighbors of the anchor closest to the cell xi are treated as neighbors of that cell. Since

k�p�N, the time complexity of this procedure is

O podt þ Nod þ N p
o d þ p2d þ Nkd

� �
¼ O Nod þ N p

o d
� �

, which is minimized when o is set to

p1
2 by equating Nod and N p

o d, where
p
o is the average size of o anchor clusters in step i) of the

above algorithm and t is the number of iterations of k-means. The above reasoning renders the

order of the runtime O Np1
2d

� �
.

We next used a locally scaled Gaussian kernel to measure the distance between cells and

anchors, and obtain an N×p adjacency matrix B with each row only keeping k nonzero ele-

ments as

B ¼ ½bij�; i ¼ 1; 2; . . . ;N; j ¼ 1; 2; . . . ; p;

bij ¼
exp �

kxi � rjk
2

2s2
i

 !

; if rj 2 NkðxiÞ;

0; otherwise;

8
><

>:

where Nk(xi) represents the k nearest anchors of cell xi, and σi is the average distance between

cell xi and its k nearest anchors.

Bipartite graph partitioning

Putting all cells and anchors together, we constructed a bipartite graph Gb = {X,r,W}, where W
is a (N+p)×(N+p) weighted adjacency matrix, denoted as:

W ¼
0 B

B0 0

" #

:
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Then spectral clustering is performed to partition the graph by solving the generalized

eigen-problem:

Lv ¼ gDv; ð1Þ

where L = D−W is the Laplacian matrix, D ¼
DX 0

O Dp

" #

is the degree matrix of the graph Gb.

For large datasets in which the number of cells is far greater than the number of anchors,

Gb is an unbalanced bipartite graph. We thus employed an efficient eigen-decomposition

method T-cut [17], which turns the problem (1) into a computational eigenproblem:

Lpz ¼ lDpz; ð2Þ

where Lp = Dp−Wp, Wp ¼ B0D� 1
X B. Note that Dp ¼ diagðB01NÞ ¼ diagðWp1pÞ. Here Lp is the

Laplacian matrix of the graph Gp = {r, Wp}, 1N ¼ ½1; 1; . . . ; 1�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

N

0
and 1p ¼ ½1; 1; . . . ; 1�

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
p

0
.

Li et al. proved that the solution of the eigen-problem (1) on graph Gb and the solution of

the eigen-problem (2) on bipartite graph Gb are equivalent [17]. Let fðle; zeÞg
K
e¼1

be the first K
eigenpairs of (2), where 0 = λ1<λ2<� � �<λK<1, and fðge; veÞg

K
e¼1

be the first K eigenpairs of (1),

where 0�γe<1. According to Li et al., we have the following

geð2 � geÞ ¼ le;

ne ¼
xe

ze

" #

;

where xe ¼
1

1� ge
Pze, and P ¼ D� 1

X B is the associated transition probability matrix from cells to

anchors.

After normalizing the matrix T = [ξ1,. . .,ξK]N×K to unit length, k-means is applied to the

rows of normalized matrix to obtain the final clustering result. Note that k-means can be

replaced by other clustering algorithms such as DBSCAN or hierarchical clustering. However,

these methods are generally less efficient than k-means.

Secuer-consensus

Taking advantage of the computational efficiency of Secuer, we proposed a consensus clustering

method Secuer-consensus, which aggregates multiple clustering outputs from Secuer to boost the

clustering stability and accuracy. The implementation is as follows. First, M different base clustering

results are obtained from Secuer, by varying the selection of anchors, the number of clusters, and the

distance metrics between anchors and cells (Euclidean or cosine). Denote all the clusters in M base

clustering results as C ¼ fC1
1
; . . . ;CK1

1 ;C
K1þ1

2 ; . . . ;CK1þK2
2 ; . . . ;CKC

M g, where KC ¼
PM

m¼1
Km and

Km is the number of clusters in the m-th base clustering result and Ce
m is the e-th clusters of m-th the

base clustering result. Then, a bipartite graph GXC ¼ fX;C; ~Wg is constructed, in which the nodes

are the cells and clusters and ~W is an (N+KC)×(N+KC) adjacency matrix indicating whether a cell

belongs to a cluster. An edge only appears between a cell and the clusters to which the cell belongs

and no edges between different cells or between different clusters are allowed. ~W can be written as:

~W ¼
0 ~E
~E 0 0

" #

;
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~Ei;h ¼
1; xi 2 Ch

�

0; otherwise
;

(

where ~E is an N×KC matrix.

Similar to the Bipartite graph partitioning section, we next solved the eigenvalue of graph

Laplacian of GXC by T-cut. That means solving the following eigenproblem:

~L~v ¼ ~g ~D~v; ð3Þ

where ~L ¼ ~D � ~W is the Laplacian matrix, and ~D ¼
~DX 0

O ~DC

" #

is the degree matrix of the

bipartite graph GXC.

The eigen-problem in (3) is equivalent to solving the following problem,

~LC~z ¼ ~l ~DC~z; ð4Þ

where ~LC ¼
~DC �

~EC is the Laplacian matrix of GC ¼ fC; ~ECg,
~EC ¼

~E0 ~D � 1
X

~E is the adjacency

matrix and ~DC ¼ diagð~EC1KC
Þ is the degree matrix.

Let fð~le; ~zeÞg
K

e¼1
be the first K eigenvalues and eigenvectors of (4), where

0¼ ~l1 <
~l2 < � � � <

~lK < 1. Further let fð~ge; ~veÞg
K
e¼1

be the first K eigenpairs of (3), where

0 � ~ge < 1. Then we have:

~geð2 � ~geÞ ¼
~le;

~ne ¼
~xe

~ze

" #

;

where ~xe ¼
1

1� ~ge
~P~ze, and ~P ¼ ~D � 1

X
~E:

Then k-means is applied to the rows of normalized matrix ~T ¼ ½~x1; . . . ; ~xK �N�K to obtain

the final clustering result.

Benchmark datasets

Fifteen publicly available scRNA-seq datasets, including six gold-standard datasets, six-silver

standard datasets and three ultra-large datasets, are used to evaluate the clustering accuracy of

our method (see S1 Table for details) [1,5,26–40]. In six gold-standard datasets, cells are highly

confident to be labeled as a specific cell type/stage according to their surface markers. In six sil-

ver standard datasets, the label of each cell is assigned by computational tools and manual

annotation using prior knowledge by previous studies [31–33,36–38]. Although widely used to

benchmark a newly proposed clustering method [4,15,22], these datasets are relatively small in

size (containing from 49 to 110,832 cells per dataset), and thus insufficient to evaluate a

method designed for much higher throughput considered in this paper. Thus, we also assessed

our method using three large datasets [5,41], which consist of 1 million cells on average. The

cell type labels in these datasets are collected from the original studies. In all the 15 datasets,

the cell type labels are considered as ground-truth, also termed as “reference”, throughout this

study.
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Data preprocessing

The preprocessing involves four steps: 1) gene/cell filtering; 2) normalization; 3) selection of

highly variable genes; 4) dimension reduction by PCA. The parameters of the preprocessing

pipeline are the same for all datasets except for the gene/cell filtering step, which instead fol-

lows the criterions in the original studies. For six small gold standard datasets, we adopted a

preprocessing strategy of gene filtering similar to that for SC3 [15]: genes are removed by the

‘gene filter’ function in the Scanpy package [8] if they are expressed in less than 10% or more

than 90% of the cells. For larger datasets including 10X PBMC, Worm neuron, Human kidney,

CITE PBMC and Mouse retain datasets, we filtered cells with fewer than one gene and retained

genes expressed in at least one cell using Scanpy. For mouse brain, we excluded cells with

fewer than 200 genes and mitochondrial genes with a UMI greater than 5%. Genes expressed

in less than 3 cells were also removed. For TAM FACS, we retained genes expressed in at least

3 cells and cells with no less than 250 expressed genes and 5000 counts. For MCA, cells with

fewer than 100 genes and genes with less than 3 cells were excluded. After filtering, raw count

matrix was normalized and log-transformed to detect highly variable genes (HVG). Finally,

Principal Component Analysis (PCA) was performed on the selected HVGs, and the top 50

PCs were retained for clustering. For COVID19, we downloaded the processed data provided

by the authors. Scripts for all the above preprocessing steps are available at https://github.com/

nanawei11/Secuer.

Note that two optional steps of data preprocessing, i.e., normalization and selection of

HVGs, can potentially affect the clustering results [42,43]. Therefore, we compared the cluster-

ing accuracies of different methods both with and without these two steps (S5 Fig).

Distance metrics

Denote xig, i = 1,. . .,N, g = 1,. . ., d as the gene expression level of the cell i in gene g. We used

the following Euclidean and cosine distances as candidate distance metrics to build the bipar-

tite graph between cells and anchors:

DEuclideanðxi; xnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pd

g¼1
ðxig � xngÞ

2

q

;

Dcosine xi; xnð Þ ¼ 1 �

Pd
g¼1

xigxng
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

g¼1
x2
ig

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
g¼1

x2
ng

q :

Clustering metrics

We compared the clustering accuracy of different methods using the ARI [14] and NMI [15],

which are widely used indices for evaluating the clustering performance when the reference or

the true cluster labels are known. ARI is defined as

ARI ¼

P
B;t

NBt

2

 !

�
P

B

NB

2

 !
P

t

Nt

2

 !" #

=
N

2

 !

1

2

P
B

NB

2

 !

þ
P

t

Nt

2

 !" #

�
P

B

NB

2

 !
P

t

Nt

2

 !" #

=
N

2

 ! ;

where N is the total number of cells, and NBτ represents the number of cells that are shared by

the predicted cluster B and true label τ, NB and Nτ are the number of cells in the predicted
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cluster B and true label τ, respectively. NMI is defined as

NMI ¼

P
B;t
PBtlog

PBt
PBPt

ð�
P

B
PBlogPB �

P
t
PtlogPtÞ=2

;

where PBt ¼
NBt
N , pB ¼

NB
N and Pt ¼

Nt
N . Higher ARI or NMI indicates better clustering result.

Supporting information

S1 Fig. Clustering performance of Secuer and U-SPEC. (A) The differences between Secuer

and U-SPEC. Here the number of clusters K in Secuer is estimated from data (i.e., data-adap-

tive) and in U-SPEC is user-specified (i.e., not data-adaptive). (B) ARI (left) and NMI (right)

of Secuer and U-SPEC on 128 datasets from Mouse Cell Atlas, where Secuer used a locally

scaled Gaussian kernel and U-SPEC used a non-locally scaled Gaussian kernel. The detailed

information on these datasets is provided in S2 Table. Each point is the average over 10 runs

and the dashed rectangles refer to the datasets with poor results (defined as those with

ARI< 0.1). P-values are computed from paired Wilcoxon test. (C) Barplots of ARI (left) and

NMI (right) compare the performance of Secuer and U-SPEC in those datasets with poor

results identified in (B). (D) ARI (left) and NMI (right) of Secuer-consensus (i.e., Secuer-C)

and U-SENC. Here U-SENC is the consensus clustering method based on U-SPEC. (E) The

UMAP of clustering results by Secuer (left) and U-SPEC (right) on the Adult bladder dataset.

(F) Heatmap showing the eigenvectors of the bipartite graph Laplacian of Secuer and U-SPEC

on the Adult bladder dataset, where rows represent cells and columns represent the eigenvec-

tors corresponding to the top 3 largest eigenvalues. The ground-truth labels are plotted as

Group.

(TIF)

S2 Fig. The Secuer parameters benchmarked in six datasets. (A) The NMIs for six datasets

are computed over different top numbers of principal components (pc) and different numbers

of nearest neighbors in MAKNN. (B) The NMIs for six datasets are computed over different

numbers of principal components and different numbers of anchors. Different panels repre-

sent different numbers of principal components.

(TIF)

S3 Fig. Performance of Secuer and other methods on simulated datasets. (A) The NMI of

different methods on simulated datasets with different sample sizes. The simulated datasets

with an increasing number of cells ranging from 10,000 to 40 million are generated from

Mouse brain datasets (see Materials and Methods for more details). (B) The number of clusters

estimated by Louvain in five simulated datasets with sample sizes ranging from 5 million to 9

million under different resolutions (x-axis). (C) We divided the entire clustering procedure

into three steps and showed the runtime of each step taken by Secuer and vanilla spectral clus-

tering (VSC) on four datasets, including Worm neuron, Simulation data with 10,000 samples,

Mouse retina and TAM FACS with the number of cells ranging from 4,217 to 110,823. (D)

The NMI of two methods on the four datasets.

(TIF)

S4 Fig. The performance of the different methods by NMI metrics on all 15 datasets. (A-C)

The NMI of the different methods on the three large datasets (A), six gold standard datasets

(B) and six silver standard datasets (C), where the COVID19-MT refers to the major cell types

label, and COVID19-CT refers to the cell types label provided by author in COVID19 dataset.
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(D) The summary of NMI of the different methods on 15 datasets.

(TIF)

S5 Fig. The influence of the data preprocessing steps on clustering accuracy. (A) Clustering

performance with and without preprocessing, in which "ALL" refers to using all four prepro-

cessing steps including normalization, logarithmic transformation, selection of high variable

genes (HVG) and scaling (zero mean and equal variance), and ‘None’ refers to omitting all

four steps. (B-E) Comparison of clustering accuracy between removing one of the steps and

‘ALL’, including removing normalization (B) logarithmic transformation (C), selection of high

variable genes (D) and scaling (E).

(TIF)

S6 Fig. The accuracy of the number of clusters estimated by different methods on the

twelve gold/silver standard datasets. (A-D) The Pearson correlation between the estimated

number of clusters and the ground-truth (Reference) across different methods: Secuer: based

on the community detection on the anchor graph (A), Secuer-eigen: based on the eigenvalues

of bipartite graph Laplacian between cells and anchors (B) (see Materials and Methods), Lou-

vain (C), and Leiden (D). The mean absolute error (MSE) for each method is shown in the top

left corner of the plot.

(TIF)

S7 Fig. The Secuer-consensus parameters benchmarked on twelve datasets. (A-C) Cluster-

ing accuracy quantified by ARI (A) and NMI (B) vs. the number of repetitions in consensus

clustering (M) outputs of Secuer fed into Secuer-consensus (i.e., Secuer-C) over different data-

sets. (C) Runtime vs. M over different datasets.

(TIF)

S8 Fig. The runtime of Secuer and Secuer-consensus using parallel computation. (A) Clus-

tering time of Secuer (A) and Secuer-consensus (i.e., Secuer-C) (B) vs. the number of cores

used in parallel computation on different datasets.

(TIF)

S1 Table. Overview of scRNA-seq benchmark datasets in this study.

(XLSX)

S2 Table. Overview of scRNA-seq benchmark datasets in S1 Fig.

(XLSX)

Acknowledgments

We would like to thank Dr. Franziska Michor and her group at Harvard University and Dana-

Farber Cancer Institute for helpful discussions and suggestions. We would like to thank Wu

and Zheng labs for helpful discussions. We gratefully acknowledge the High-performance

Computing Platform of Peking University for conducting the scRNA-seq data analyses.

Author Contributions

Conceptualization: Xiaoqi Zheng, Hua-Jun Wu.

Data curation: Nana Wei, Yating Nie.

Formal analysis: Nana Wei, Yating Nie.

Funding acquisition: Hua-Jun Wu.

PLOS COMPUTATIONAL BIOLOGY Ultrafast clustering of single-cell RNA-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010753 December 5, 2022 17 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010753.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010753.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010753.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010753.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010753.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010753.s010
https://doi.org/10.1371/journal.pcbi.1010753


Investigation: Xiaoqi Zheng, Hua-Jun Wu.

Methodology: Nana Wei.

Resources: Lin Liu, Xiaoqi Zheng, Hua-Jun Wu.

Software: Nana Wei.

Supervision: Lin Liu, Xiaoqi Zheng, Hua-Jun Wu.

Validation: Yating Nie, Lin Liu.

Visualization: Nana Wei, Yating Nie.

Writing – original draft: Nana Wei, Lin Liu, Xiaoqi Zheng, Hua-Jun Wu.

Writing – review & editing: Nana Wei, Yating Nie, Lin Liu, Xiaoqi Zheng, Hua-Jun Wu.

References
1. Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of sin-

gle-cell RNA sequencing. Mol Cell. 2015; 58(4):610–20. https://doi.org/10.1016/j.molcel.2015.04.005

PMID: 26000846

2. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. Comparative analysis

of single-cell RNA sequencing methods. Mol cell. 2017; 65(4):631–43. e4. https://doi.org/10.1016/j.

molcel.2017.01.023 PMID: 28212749

3. Wang D, Bodovitz S. Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol. 2010; 28

(6):281–90.

4. BrbićM, Zitnik M, Wang S, Pisco AO, Altman RB, Darmanis S, et al. MARS: discovering novel cell

types across heterogeneous single-cell experiments. Nat Methods. 2020; 17(12):1200–6. https://doi.

org/10.1038/s41592-020-00979-3 PMID: 33077966

5. Ren X, Wen W, Fan X, Hou W, Su B, Cai P, et al. COVID-19 immune features revealed by a large-scale

single-cell transcriptome atlas. Cell. 2021; 184(7):1895–913. e19. https://doi.org/10.1016/j.cell.2021.

01.053 PMID: 33657410

6. Duò A, Robinson MD, Soneson C. A systematic performance evaluation of clustering methods for sin-

gle-cell RNA-seq data. F1000Res. 2018;7.

7. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across

different conditions, technologies, and species. Nat Biotechnol. 2018; 36(5):411–20. https://doi.org/10.

1038/nbt.4096 PMID: 29608179

8. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis.

Genome Biol. 2018; 19(1):1–5.

9. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J

Stat Mech 2008; 2008(10):P10008.

10. Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities.

Sci Rep. 2019; 9(1):1–12.

11. Von Luxburg U. A tutorial on spectral clustering. Statistics and computing. 2007; 17(4):395–416.

12. Huang D, Wang C-D, Wu J-S, Lai J-H, Kwoh C-K, Engineering D. Ultra-scalable spectral clustering and

ensemble clustering. IEEE Trans Comput. 2019; 32(6):1212–26.

13. Chen X, Cai D, editors. Large scale spectral clustering with landmark-based representation. 2011:

Twenty-fifth AAAI conference on artificial intelligence.

14. Cai D, Chen X. Large Scale Spectral Clustering Via Landmark-Based Sparse Representation. IEEE

Transactions on Cybernetics. 2015; 45(8):1669–80. https://doi.org/10.1109/TCYB.2014.2358564

PMID: 25265642

15. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, et al. SC3: consensus clustering of

single-cell RNA-seq data. Nat methods. 2017; 14(5):483–6. https://doi.org/10.1038/nmeth.4236 PMID:

28346451

16. Do VH, Rojas Ringeling F, Canzar S. Linear-time cluster ensembles of large-scale single-cell RNA-seq

and multimodal data. Genome Res. 2021; 31(4):677–88. https://doi.org/10.1101/gr.267906.120 PMID:

33627473.

PLOS COMPUTATIONAL BIOLOGY Ultrafast clustering of single-cell RNA-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010753 December 5, 2022 18 / 20

https://doi.org/10.1016/j.molcel.2015.04.005
http://www.ncbi.nlm.nih.gov/pubmed/26000846
https://doi.org/10.1016/j.molcel.2017.01.023
https://doi.org/10.1016/j.molcel.2017.01.023
http://www.ncbi.nlm.nih.gov/pubmed/28212749
https://doi.org/10.1038/s41592-020-00979-3
https://doi.org/10.1038/s41592-020-00979-3
http://www.ncbi.nlm.nih.gov/pubmed/33077966
https://doi.org/10.1016/j.cell.2021.01.053
https://doi.org/10.1016/j.cell.2021.01.053
http://www.ncbi.nlm.nih.gov/pubmed/33657410
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/nbt.4096
http://www.ncbi.nlm.nih.gov/pubmed/29608179
https://doi.org/10.1109/TCYB.2014.2358564
http://www.ncbi.nlm.nih.gov/pubmed/25265642
https://doi.org/10.1038/nmeth.4236
http://www.ncbi.nlm.nih.gov/pubmed/28346451
https://doi.org/10.1101/gr.267906.120
http://www.ncbi.nlm.nih.gov/pubmed/33627473
https://doi.org/10.1371/journal.pcbi.1010753


17. Li Z, Wu X-M, Chang S-F, editors. Segmentation using superpixels: A bipartite graph partitioning

approach. 2012: IEEE conference on computer vision and pattern recognition.

18. Hubert L, Arabie P. Comparing partitions. J Classif. 1985; 2(1):193–218.

19. Strehl A, Ghosh J. Cluster ensembles—a knowledge reuse framework for combining multiple partitions.

J Mach Learn Res. 2003; 3(3/1/2003):583–617. https://doi.org/10.1162/153244303321897735

20. McInnes L, Healy J, Melville J. Umap: Uniform manifold approximation and projection for dimension

reduction. J arXiv preprint arXiv:03426. 2018.

21. Xie K, Huang Y, Zeng F, Liu Z, Chen T. scAIDE: clustering of large-scale single-cell RNA-seq data

reveals putative and rare cell types. NAR genom bioinform. 2020; 2(4):lqaa082. https://doi.org/10.1093/

nargab/lqaa082 PMID: 33575628

22. Tian T, Zhang J, Lin X, Wei Z, Hakonarson H. Model-based deep embedding for constrained clustering

analysis of single cell RNA-seq data. Nat Commun. 2021; 12(1):1873. https://doi.org/10.1038/s41467-

021-22008-3 PMID: 33767149

23. Huang D, Wang CD, Lai JH, Kwoh CK. Toward Multidiversified Ensemble Clustering of High-Dimen-

sional Data: From Subspaces to Metrics and Beyond. IEEE Transactions on Cybernetics. 2022; 52

(11):12231–44. https://doi.org/10.1109/TCYB.2021.3049633 PMID: 33961570

24. Chung FR, Graham FC. Spectral graph theory: American Mathematical Soc.; 1997.

25. Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell. 2000; 22

(8):888–905.

26. Biase FH, Cao X, Zhong S. Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by sin-

gle-cell RNA sequencing. Genome Res. 2014; 24(11):1787–96. https://doi.org/10.1101/gr.177725.114

PMID: 25096407
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