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Abstract

Motivation: Inference of differentially methylated (DM) CpG sites between two groups of tumor samples with differ-
ent geno- or pheno-types is a critical step to uncover the epigenetic mechanism of tumorigenesis, and identify
biomarkers for cancer subtyping. However, as a major source of confounding factor, uneven distributions of tumor
purity between two groups of tumor samples will lead to biased discovery of DM sites if not properly accounted for.

Results: We here propose InfiniumDM, a generalized least square model to adjust tumor purity effect for differential
methylation analysis. Our method is applicable to a variety of experimental designs including with or without
normal controls, different sources of normal tissue contaminations. We compared our method with conventional
methods including minfi, limma and limma corrected by tumor purity using simulated datasets. Our method shows
significantly better performance at different levels of differential methylation thresholds, sample sizes, mean purity
deviations and so on. We also applied the proposed method to breast cancer samples from TCGA database to fur-
ther evaluate its performance. Overall, both simulation and real data analyses demonstrate favorable performance
over existing methods serving similar purpose.
Availability and implementation: InfiniumDM is a part of R package InfiniumPurify, which is freely available from
GitHub (https://github.com/Xiaoqizheng/InfiniumPurify).
Contact: xqzheng@shnu.edu.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer has long been depicted as a type of genetic disease caused by
either activation of oncogenes or inactivation of tumor suppressor
genes. In recent years, it is becoming acceptable that the aberrant of
epigenetic modification of DNA molecular, mainly including DNA
methylation, could also contribute to tumor initiation and progres-
sion. For example, as one of the hallmarks of cancer, hyper-
methylation in CpG islands (Burbee et al., 2001; Yoon et al., 2001)
and global hypo-methylation across the genome were observed for
most cancer types (Raddatz et al., 2012). Moreover, the reversibility
of DNA methylation can be used as a potential target for therapeutic
treatment of cancer (Ahuja et al., 2016). Consequently, it is of vital
importance to accurately quantify the methylation difference be-
tween two sets of samples, including tumors versus adjacent normal
tissues, tumor samples from different subtypes or those respond dif-
ferently to a given cancer therapy.

The detection of differentially methylated (DM) CpG sites can
be implemented by the typical differential expression detection tools
such as limma (Ritchie et al., 2015) and edgeR (Robinson et al.,
2010). Meanwhile, there are also a number of methods available
that were developed specifically for DNA methylation data from
bisulfite sequencing (Akalin et al., 2012; Feng et al., 2014; Hansen
et al., 2012; Hebestreit et al., 2013; Park et al., 2014; Sun et al.,
2014; Wu et al., 2015) and Illumina Infinium microarray (Aryee
et al., 2014; Kuan et al., 2010; Morris et al., 2014; Peters et al.,
2015; Warden et al., 2013; Zheng et al., 2017).

However, tumor tissues are highly heterogeneous by consisting
of different cell populations, e.g. tumor cells, normal cells, blood
vessel and immune cells. Among them, the normal cell contamin-
ation is a major confounder for downstream analyses. In the past
few years, it has been found by many researchers that tumor purity
has substantial confounding effect in a number of DNA methylation
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analyses, e.g. detection of DM sites between tumor and normal sam-
ples (Zheng et al., 2017), subtype clustering (Zhang et al., 2017)
and epigenome-wide association studies (Jaffe and Irizarry, 2014). A
few methods have also been proposed to detect cell type-specific dif-
ferential signals from DNA methylation data (Li et al., 2019; Zheng
et al., 2018). However, all these methods are developed to address
differential analysis accounting for cellular composition from gen-
eral design. None of the methods are tailored for studying tumor
samples, nor are they comprehensively tested by cancer data. For
tumor-normal comparison, we have previously developed a general-
ized least square method to infer DM CpG sites by considering
tumor purity effect (Zheng et al., 2017). However, DM between dif-
ferent tumor subtypes could be more practically useful for the
understanding of biological or clinical processes, and identifying ef-
fective biomarkers for diagnoses and treatments. For example, given
two sets of tumor samples that show distinct clinical trajectories or
outcomes for a cancer therapy, we may want to identify a set of
marker genes whose methylation statuses are correlated with clinical
phenotypes. An intuitive solution to this problem is to include tumor
purities as a covariate into the regression model. However, as will
be shown in the Method part, this kind of approach is not statistical-
ly rigorous since the relationship between differential methylation
and tumor purity is multiplicative rather than additive, thus result-
ing in many false positive and false negative DM sites.

For bisulfite sequencing data, Hakkinen et al. proposed a statis-
tical method to deconvolve bisulfite reads of tumor samples by max-
imum likelihood estimation (Hakkinen et al., 2018). Their model
shows superior and robust results compared with typical DM detec-
tion tools. However, bisulfite-sequencing techniques are costly and
not used extensively in clinical research. As another popular tech-
nique to measure whole genome methylation profile at single CpG
site resolution, Infinium 450k array is more affordable and the gen-
erated data are easier to analyze and interpret. It thus becomes the
primary choice to study DNA methylation in cancer research, and
was widely adopted in many cohorts, e.g. TCGA and ENCODE. In
the present work, we propose a novel and statistically rigorous
framework, based on a generalized linear model, for DM analysis
using Infinium 450k array data from two groups of tumor samples.
The performance of the proposed method was comprehensively
evaluated by simulation studies as well as real data analyses using
TCGA breast tumor samples.

2 Materials and methods

2.1 Data and preprocessing
DNA methylation beta values range from 0 to 1, and mainly locate
at the boundary regions (0 and 1). As a result, raw beta values of a
CpG site cannot be modeled as normal distribution in the original
scale. To fully embrace the powerful and flexible linear regression
model which often assumes the normality of data distribution, we
first transformed the raw beta values using an arcsine transform-
ation: f xð Þ ¼ arcsin 2x� 1ð Þ. Such transformation has been previ-
ously used in differential methylation analysis and shows reliable
results (Zheng et al., 2017).

2.2 Adding tumor purities as regression covariate is

problematic
Suppose we have two groups of tumor samples and presumably a set
of normal control samples from the same cancer type. For CpG site i
in dataset, let Xi be the transformed beta values for pure normal

samples, we assume that Xi � Nðmi; r2
i Þ: Let Y1;i and Y2;i be the

transformed beta values for pure cancer cells in subtypes 1 and 2, re-
spectively. We assume that Y1;i ¼ Xi þ d1;i, and Y2;i ¼ Xi þ d2;i,
where d1;i and d2;i are the differences between pure cancer and pure
normal cells in subtypes 1 and 2, which are also assumed to follow

normal distributions, i.e. d1;i � N l1;i; s
2
1;i

� �
, d2;i � N l2;i; s

2
2;i

� �
. Due

to the additivity of normal distribution, Y1;i and Y2;i also follow

normal distributions, i.e. Y1;i � N mi þ l1;i;r
2
i þ s2

1;i

� �
and

Y2;i � N mi þ l2;i; r
2
i þ s2

2;i

� �
. Our goal here is to test, for each CpG

site, whether the mean methylation levels of pure cancer samples are
identical in two subtypes, i.e. mi þ l1;i ¼ mi þ l2;i.

In real clinical scenarios, however, the data from pure cancer
samples in two subtypes are not available. Instead, we only observe
methylation profiles of tumor tissues, representing mixture signals
from pure normal and cancer cells at different proportions. The pro-
posed method assumes tumor purities to be known, which can be
inferred using state-of-the-art methods (Ahn et al., 2013; Bao et al.,
2014; Carter et al., 2012; Yoshihara et al., 2013; Zheng et al.,
2017). If a sample s comes from the subtype k, the observed methy-

lation level of a CpG site i, denoted as Y
0

k;is, is the mixed signals

from pure normal and cancer cells and can be expressed as

Y
0

k;is ¼ 1� kk;s

� �
Xis þ kk;sYk;is ¼ Xis þ kk;sdk;i. Thus Y

0

1;is � Nðmiþ
k1;sl1;i; r

02
i1Þ and Y

0

2;is � Nðmi þ k2;sl2;i; r
02
i2Þ, where r

02
i1 and r

02
i2 are

the variances for Y
0

1;is and Y
0

2;is respectively and r
02
i1 6¼ r2

i , r
02
i2 6¼ r2

i .

We further let l2;i ¼ l1;i þ bi, then the hypothesis test becomes:

H0 : bi ¼ 0. Under this parameterization, the distributions of

Y
0

1;is and Y
0

2;is are now Y
0

1;is � N mi þ k1;sl1;i; r
02
i1

� �
and

Y
0

2;is � N mi þ k2;sl1;i þ k2;sbi; r
02
i2

� �
. From the derivations of

Y
0

1;is and Y
0

2;is, we found that the DM analysis between tumor sam-

ples is primarily to test H0 : k2;sl1;i � k1;sl1;i þ k2;sbi ¼ 0, which is

not equivalent to test H0 : bi ¼ 0. We further found that uneven level
of tumor purities will seriously affect the differential methylation ana-
lysis, and more importantly, tumor purity has multiplicative effect on
differential methylation, instead of additive. Therefore, the common
practice by adding tumor purity as a continuous covariate in addition
to other experimental factors fails to incorporate purity in a multipli-
cate framework, which may lead to biased results in many cases.

2.3 Proposed model formulation
We proposed the following linear regression model for DM analysis
between two groups of tumor samples. Let Z be a vector by concate-
nating n0 normal samples, n1 tumor samples of subtype 1 and
n2 tumor samples of subtype 2. For simplicity of notation, we drop
the subscript i in the following derivations. Denote all observed data

as Z ¼ X1; . . . ;Xn0
;Y

0

1;1; . . . ;Y
0

1;n1
;Y

0

2;1; . . . ;Y
0

2;n2

h iT
, the observed

data can be described as a linear model: Z ¼Wbþ e; where

W ¼

1

..

.

1

1

..

.

1

1

..

.

1

0

..

.

0

k1;1

..

.

k1;n1

k2;1

..

.

k2;n2

0

..

.

0

0

..

.

0

k2;1

..

.

k2;n2

2
666666666666666666664

3
777777777777777777775

; b ¼
m
l1

b

2
64

3
75 and e ¼

e1

..

.

en0

en0þ1

..

.

en0þn1

..

.

en0þn1þn2

2
66666666666666664

3
77777777777777775

:

Our framework is flexible to detect DM sites even if normal sam-
ples are not available (by removing normal-corresponding rows
from W, as demonstrated in later part). And we also generalized
our model to other comparison problems, e.g. comparison between
two cancer types where their associated normal tissues are different
(by adding one column to W, as demonstrated in Supplementary
Material S1). This framework is also general enough to include our
previous method (Zheng et al., 2017) as a special case where there
are only normal and tumor samples from one cancer type.

The estimated parameters from GLS for regression coefficients
and covariance matrix are obtained as

b̂ ¼ WTWð Þ�1
WTZ¢HZ; where H ¼ WTWð Þ�1

WT ;
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and

var b̂
� �
¼ Hvar Zð ÞHT :

The variance of Z is var Zð Þ ¼
R1

0

0

0

R2

0

0

0

R3

2
664

3
775, where

R1 ¼

r2

0

..

.

0

0

r2

..

.

0

0

0

. .
.

0

0

0

..

.

r2

2
6666664

3
7777775
, R2 ¼

r
02
1

0

..

.

0

0

r
02
1

..

.

0

0

0

. .
.

0

0

0

..

.

r
02
1

2
6666664

3
7777775

and R3 ¼

r
02
2

0

..

.

0

0

r
02
2

..

.

0

0

0

. .
.

0

0

0

..

.

r
02
2

2
6666664

3
7777775
.

Given estimated b̂, regression residuals are ê ¼ Z�Wb̂, then the

estimated values of r2, r
02
1 and r

02
2 are

r̂2 ¼

Pn0

j¼1

ê2
j

n0 � 3
; r̂

02
1 ¼

Pn0þn1

j¼n0þ1

ê2
j

n1 � 3
and r̂

02
2 ¼

Pn0þn1þn2

j¼n0þn1þ1

ê2
j

n2 � 3
:

We applied a shrinkage estimator on the estimated subtypes/nor-

mal variances to obtain r̂2, r̂
02
1 and r̂

02
2 , which was also utilized by

(Park and Wu, 2016). The estimated variance of b can be obtained

by dividing H into three parts and plugging estimated values of r2,

r
02
1 and r

02
2 to equation var b̂

� �
¼ Hvar Zð ÞHT as

var b̂
� �
¼ Hvar Zð ÞHT ¼ H1 H2 H3½ �

R1

0

0

0

R2

0

0

0

R3

2
664

3
775

HT
1

HT
2

HT
3

2
6664

3
7775

¼ H1R1HT
1 þH2R2HT

2 þH3R3HT
3 :

For differential methylation between tumor subtypes, the Wald
test statistics are calculated as

t ¼
b̂ 3½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var b̂
� �

3;3½ �

q ;

where b̂ 3½ � is the third item of b̂, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var b̂
� �

3;3½ �

q
is the [3, 3] elem-

ent of the matrix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var b̂
� �q

. The Wald statistics follow a t distribu-

tion with n0 þ n1 þ n2 � 3 degrees of freedom, and it is possible to
calculate nominal P-values. Based on the calculated P-values at each
CpG site, false discovery rate (FDR) can be estimated using estab-
lished procedures such as Benjamini–Hochberg’s method (Benjamini
and Hochberg, 1995).

Based on the above framework, we can propose a model to iden-
tify DM between tumor subtypes without using the data from nor-
mal samples. Following the notations above, the observed data can
be expressed in following regression form:

Y
0

1;1

Y
0

1;2

..

.

Y
0

1;n1

Y
0

2;1

Y
0

2;2

..

.

Y
0

2;n2

2
66666666666666666666664

3
77777777777777777777775

¼

1

1

..

.

1

1

1

..

.

1

k1;1

k1;2

..

.

k1;n1

k2;1

k2;2

..

.

k2;n2

0

0

..

.

0

k2;1

k2;2

..

.

k2;n2

2
66666666666666664

3
77777777777777775

m
l1

b

2
64

3
75þ

e1

e2

..

.

en1

en1þ1

en1þ2

..

.

en1þn2

2
66666666666666664

3
77777777777777775

:

Calculation details are similar, except now we have

var Zð Þ ¼
R1

0

0

R2

" #
, where R1 ¼

r
02
1

0

..

.

0

0

r
02
1

..

.

0

0

0

. .
.

0

0

0

..

.

r
02
1

2
6666664

3
7777775

and

R2 ¼

r
02
2

0

..

.

0

0

r
02
2

..

.

0

0

0

. .
.

0

0

0

..

.

r
02
2

2
6666664

3
7777775

, so var b̂
� �
¼ H1R1HT

1 þH2R2HT
2 . Given

estimated b̂, regression residuals are ê ¼ Z�Wb̂, then the esti-

mated values of r
02
1 and r

02
2 are

r̂
02
1 ¼

Pn1

j¼1

ê2
j

n1 � 3
and r̂

02
2 ¼

Pn1þn2

j¼n1þ1

ê2
j

n2 � 3
:

The Wald test statistics are calculated as

t ¼
b̂ 3½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var b̂
� �

3; 3½ �

q :

The Wald test statistics follow a t distribution with n1 þ n2 � 3
degrees of freedom, and the P-values can be obtained accordingly.
Benjamini–Hochberg’s method is applied on P-values to obtain
FDRs.

We termed the proposed method as InfiniumDM_ctl when nor-
mal controls are available, and InfiniumDM when without normal
controls. The method has been implemented as a function in the R
package InfiniumPurify, which is freely available from GitHub.

3 Results

3.1 Tumor purities vary significantly among different

cancer subtypes
We first examined the distributions of tumor purities of different
subtypes by taking breast cancer samples (BRCA) from TCGA as an
example. BRCA samples can be categorized into five intrinsic sub-
types, i.e. basal, her2, luminal A and B and normal-like, based on
expression profiles of 50 marker genes (PAM50) (Berger et al.,
2018). Previous studies found different subtypes show distinct clinic-
al outcomes including recurrent risk, response to hormonal and
chemical therapies (Liu et al., 2016). Another cancer subtyping
strategy which gains broad interest was the consensus Non-negative
Matrix Factorization (cNMF). It groups samples based on a small
set of metagenes (which defined as positive combination of original
genes) rather than raw genes to avoid the curse of dimensionality
and then uses consensus strategy to assemble different clustering
results. We downloaded the cNMF clustering results for BRCA
tumor samples using DNA methylation 450k array data at
k ¼ 5 from FIREHOSE of the Broad institute (https://gdac.broadin
stitute.org/).

We examined two measurements of tumor purity for TCGA
tumor samples. The first is by InfiniumPurify, which infers tumor
purities from Infinium 450k array data with informative DM CpG
sites using a density estimation algorithm (Zheng et al., 2017). The
second measurement is consensus purity estimate (CPE), which
takes the median of purity estimates from four methods after nor-
malization (Aran et al., 2015). As shown in Figure 1, tumor purities
estimated from InfiniumPurify vary significantly between different
subtypes of BRCA samples for both cNMF (Fig. 1A) and PAM50
clusters (Fig. 1B) (P¼5.04e–98 and 4.8e–04 by F test). The respect-
ive tendency and P-values are similar for CPE (Fig. 1C and D)
(P¼3.12e–88 and 9.57e–04 by F test) and other available purity
estimates (Supplementary Fig. S1). Therefore, it is necessary for us
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to account for tumor purity in differential methylation analysis be-
tween different tumor subtypes.

Next, we aim to show that uneven levels of tumor purities be-
tween two sets of samples will undercut the differential methylation
analysis if not properly adjusted for. We used methylation profiles
of two cancer cell lines Mcf7 and T47dDm002p24h, and one nor-
mal cell line Hmec (all available from ENCODE) as reference to
simulate tumor and normal samples (detailed simulation procedures
are available in the first paragraph of Section 3.2). Since the refer-
ence is known, we used the methylation difference between two
pure cell lines as criterion to define differential methylated CpG
sites. Explicitly, if the absolute methylation difference of a CpG site
between two cell lines is larger than 0.05, the CpG site is considered
to be DM between these two cell lines and vice versa. As shown in
Figure 2A, all CpG sites can be divided into three distinct groups
according to their methylation levels in normal and two types of
pure cancer cell lines. The first group consists of CpG sites showing
no significantly methylated difference (methylation difference less
than 0.05) between two types of cancer cells, as well as with normal
cells. Obviously, this type of CpG site, which accounted for 37% of
all CpG sites (Fig. 2B), will not be affected by the uneven levels of
tumor purities. In other words, these CpG sites correspond to the
true negative sites, for which the difference is always not significant
between pure cancer cells and tumor subtypes. The second group
consists of CpG sites that are also not DM between two cancer cell
types, but at least one of them was DM with that in normal cells
(type 2 sites). In such case, the uneven tumor purities between two
types of tumor samples will end up with significant difference of
observed methylation levels between two groups of tumor samples.
An example CpG site for such case is shown in Figure 2C, where the
mean methylation level of two types of cancer cells was almost the
same (�0.88), but significantly different from that in normal cells
(�0.14). If tumor purities of 2 sets of tumor samples are different,
say 1 group has an averaged purity of 0.3 and the other is 0.6, then
methylation levels between 2 groups of tumor samples will be quite
different (around 0.38 versus 0.61). This type of CpG site accounts
for 15% of total number of CpG sites (Fig. 2B), but contributes to
the most of false positive CpG sites in DM analysis. In contrast, the
third group only requires significant difference between two types of
cancer cells, regardless of the difference between cancer and normal
cells. This type of CpG site contains two scenarios, one is true posi-
tive sites, which are DM between pure cancer cells and the

difference also holds after mixing with normal cells; the other is false
negative sites, which are DM between pure cancer cells, but the dif-
ference is not significant after mixing the normal cells (Fig. 2D).
Obviously, this type of CpG site constitutes the majority of all CpG
sites, specifically, 48% of all CpG sites (Fig. 2B).

3.2 Simulation
All simulations are based on DNA methylation 450k array data. We
used methylation data from three cell lines Hmec, Mcf7 and
T47dDm002p24h downloaded from ENCODE as reference to gen-
erate simulated data, where Hmec cell line is derived from normal
breast cells, Mcf7 and T47dDm002p24h cell lines are derived from
breast cancer cells. We first generated methylation profiles of a num-
ber of cells based on each individual cell line. Taken the normal
breast endothelial cell line Hmec as an example, we used its methy-
lation profile as baseline and added independent random noise of
normal distribution N(0, r2) where the SD r is estimated from 96
normal breast samples from TCGA. Because the pure cancer sam-
ples are more heterogeneous than normal, we multiply the variances
estimated from pure normal samples by two as the variances of pure
cancer cells. Then the beta values for 2 sets of tumor samples were
generated by mixing the simulated pure normal and cancer data
with tumor purities generated from normal distributions with mean
m ranges from 0.05 to 0.95, and SD 0.2, which are similar to the
real data estimates.

Comprehensive simulation studies are conducted to evaluate the
performance of our method as well as the three conventional meth-
ods from several different aspects. Our criterion to evaluate the
methods is the accuracy of identifying true DM sites over non-DM
sites. In detail, for a CpG site, if the absolute difference of the true
mean methylation levels between two types of pure cancer samples
is greater than a threshold, it is defined as a DM site. If the absolute
difference of the true mean methylation levels is less than a thresh-
old, it is deemed as a non-DM site. The receiver operating

A

C

D

B

Fig. 2. Tumor purity affects differential methylation analysis between two sets of

tumor samples. (A) Three types of CpG sites in DM analysis, where tumor samples

are mixed from two cancer and one normal cell lines. (B) Proportion of three types

of sites in simulation study. Examples of false positive (C) and false negative (D)

sites in simulated data. Left panel shows methylation levels for pure normal and

cancer cells. Middle panel shows tumor purity distributions in tumor samples. Right

panel shows observed methylation levels in tumor samples

A B

C D

Fig. 1. Purity distributions for different BRCA subtypes. Purity distributions by

InfiniumPurify for cNMF (A) and PAM50 (B) subtypes. Purity distributions by CPE

for cNMF (C) and PAM50 (D) subtypes. P-values are obtained by F-test
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characteristic (ROC) curve was plotted for each simulation, and the
area under the curve (AUC) was calculated. Higher AUC is expected
from better method. We compared different methods, including
minfi, limma and limma corrected by using tumor purity as an addi-
tive covariate (termed as limmaPurity hereafter) under different par-
ameter settings. In each setting, the results presented in this section
are averaged over 50 Monte Carlo datasets, expect for Figure 3A,
which is only based on one dataset.

We first compared these algorithms under different DM cutoffs
0.05, 0.1, 0.15 and 0.2, which roughly provides proportion of DM
sites at 47%, 37%, 31% and 26% of total number of CpG sites
(349707). Figure 3A shows ROC curves and AUC values of thresh-
olds 0.05 and 0.2 from different methods (results for thresholds 0.1
and 0.15 are shown in Supplementary Fig. S2), under the same sam-
ple size 50 and mean purity deviation 0.3. For all simulation scen-
arios, our method with control samples (InfiniumDM_ctl) provides
the best results, followed by InfiniumDM. Limma and minfi present
very similar performances (0.843 versus 0.845 at threshold 0.2),
which is expected because they both used linear regression model.
The accuracy of limmaPurity, which includes tumor purity as a
covariate, has greatly improved performance compared with limma.
In detail, the AUC values are 0.821 and 0.892 from limma and
limmaPurity, while our proposed methods have AUC 0.941 for
InfiniumDM and 0.968 for InfiniumDM_ctl when threshold is 0.05.
The higher prediction accuracy of our method should attributed to
our correct model hypothesis and statistically rigorous modeling of
the purity effect. Moreover, the performance of all methods becomes
better and the performance difference becomes smaller when the
thresholds increase as expected, since increasing thresholds makes
the differential signals easier to detect. We also compared the speci-
ficity of different methods under the same parameter settings. We
found our proposed method achieved much higher specificity than
other methods (Supplementary Fig. S3).

To investigate the impact of sample sizes on the performance of
the different methods, we conducted another simulation study with
the same settings as above using DM cutoff 0.05. Figure 3B shows
the AUC values by the 5 methods under sample sizes 10, 50 and
100. InfiniumDM_ctl still provides the best accuracy among all
methods, followed by InfiniumDM. The accuracies of limma and
minfi are almost the same, on average about 0.81 for different sam-
ple sizes and limmaPuirty has better performance (�0.88). We also
observe that the accuracies of limmaPurity and our proposed
method have been greatly improved when sample size increases
from 10 to 50. For example, the AUC increases from 0.84 to 0.89
for limmaPurity, and from 0.89 to 0.94 for InfiniumDM and from
0.92 to 0.96 for InfiniumDM_ctl. However, the performance from

the 3 methods remained almost unchanged when the sample size
increases from 50 to 100. These results indicate that 50 samples in
each group are sufficient to achieve satisfactory performance under
the current setting.

As discussed in Section 3.1, uneven levels of tumor purity be-
tween two sets of samples can seriously undercut the differential
methylation analysis if not properly adjusted for, we conducted an
additional simulation study to examine the effect of purity differen-
ces between two types of tumor samples. We set the mean tumor
purities in 1 group as 0.3, and the purity differences between 2
groups range from low (0) to high (0.6) with other parameter set-
tings fixed. Figure 3C shows the average AUC estimates over 50
Monte Carlo datasets. It shows that the mean difference is closely
related with the detection performance for minfi, limma and
limmaPurity. In detail, the AUC values of the three methods grad-
ually decrease with the increase of the mean purity difference, but
our proposed method is robust against the change of purity differ-
ence. For example, when the mean purity difference is 0 (i.e. the
tumor purities of the 2 groups were almost the same), the AUC val-
ues of limma and minfi are almost the same (�0.91) and AUC of
limmaPurity is around 0.93. However, when the mean purity differ-
ence increases to 0.3, the AUC values of limma, minfi and
limmaPurity decrease to 0.82, 0.82 and 0.9, respectively. When the
mean purity difference continues to increase until 0.6, the AUC val-
ues of limma and minfi decrease to 0.79, the AUC of limmaPurity
decreases to 0.87, while the AUC values of our methods are almost
unchanged across all scenarios. Overall, InfiniumDM_ctl and
InfiniumDM consistently outperform existing methods, with an
average AUC around 0.95 for most scenarios.

Among all scenarios, we found that the reliability of tumor pur-
ity has vital impact on the detection accuracy of DM sites. We com-
pared the AUC values of limmaPurity, InfiniumDM and
InfiniumDM_ctl, using true tumor purities by adding different levels
of noise as inputs (Gaussian distribution with mean 0 and SDs rang-
ing between 0 and 1, stepped by 0.02). The DM cutoff is set as 0.05,
the mean tumor purity of one group is 0.3 and the other group is
0.6. It is shown that the AUC values of all three methods drop with
the increase of SD (Fig. 3D). Our methods still outperform
limmaPurity (around 0.86 over 0.82), indicating that our proposed
methods are more robust even estimated tumor purities are biased.

We also investigated the performance of our algorithms on three
types of CpG sites. We conducted simulation studies with sample
size 50, and the mean difference of tumor purity between 2 types of
tumor samples is roughly 0.3. Here, we also used 0.05 as a threshold
to divide all CpG sites into 3 groups according to the methylation
levels in normal and 2 types of pure cancer cells. As methylation lev-
els in two pure cancer cells are known for each CpG site, we defined
the accuracy as the percentage of correctly predicted sites. CpG sites
with FDR lower than 0.05 are defined as DM sites between 2 types
of tumor samples. Figure 3E shows the accuracies for the three
types of CpG sites from different methods. For type 1 sites, the ac-
curacy of InfiniumDM_ctl is 0.92, followed by InfiniumDM with
accuracy of 0.9 and limmaPurity shows a higher accuracy of 0.81
compared with limma and minfi (�0.65). In contrast, limma and
minfi achieve the worst performance for the type 2 sites (�0.19).
This is because limma and minfi ignore tumor purity in detection of
DM sites, thus the uneven tumor purities between two sets of samples
could seriously bias the analysis of this type of sites and cause false
positive findings. While limmaPurity and InfiniumDM_ctl have much
better accuracy compared with limma and minfi. For type 3 CpG
sites, we still observed that the proposed method achieves the best per-
formances (�0.95 versus 0.88). These results confirm the favorable
performance of InfiniumDM in differential methylation analysis be-
tween tumor samples while considering tumor purity, over other exist-
ing and commonly used differential methylation analysis tools.

Finally, we also conducted a series of simulation studies by using
more stringent threshold for DM analysis. The simulated data are
generated as the same procedure as described above. The only differ-
ence is that the true DM sites are defined as those having minfi
P-values less than 0.05 and absolute methylation difference greater
than 0.05. As shown in Supplementary Figure S4, the proposed

A

C
D E

B

Fig. 3. DM detection accuracy from simulation under different scenarios. (A) ROC

curves and AUC of the 5 methods including minfi, limma, limmaPurity,

InfiniumDM and InfiniumDM_ctl on 2 simulated datasets with sample size 50 and

cutoffs 0.05 (left panel), 0.2 (right panel). (B) Histogram of AUC by different sam-

ple sizes from the five methods. (C) Heatmap of AUC under different mean purity

deviations. (D) AUC of different methods against noises of tumor purities. (E) DM

calling accuracy of the five methods on three types of CpG sites
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method demonstrates consistent better accuracies under all simu-
lated parameter settings, i.e. DM cutoff, sample sizes, mean purity
deviations and purity estimation biases. These results further con-
firm the favorable performance of InfiniumDM in differential
methylation analysis between tumor samples.

3.3 Real data analyses on BRCA samples
We further applied our method to BRCA samples from the TCGA
database. We downloaded level 3 DNA methylation 450k array
data of breast cancer from TCGA (https://portal.gdc.cancer.gov/),
and PAM50 subtyping information from Broad GDAC Firehose
(https://gdac.broadinstitute.org/). Note that only a part of TCGA
tumor samples have subtyping information, we obtained in total
214 BRCA samples with annotated PAM50 subtypes. We then
applied the proposed method to identify DM CpG sites between any
two subtypes. To evaluate the performance of InfiniumDM_ctl, 13
normal controls are included. In consistent with the simulation
study, we also compared our method with minfi, limma and
limmaPurity.

Figure 4A shows the numbers of significant DM sites (defined as
FDR < 0.01) in above between-subtype comparisons. On average,
our methods output much more CpG sites than limmaPurity, limma
and minfi. Note that the number of significant DM sites obtained by
InfiniumDM_ctl is slightly less than that by InfiniumDM (67387
versus 68398). This may be possibly because normal tissues from
clinical practices are also not pure but consist of different types of
cells. The heterogeneity of normal samples would increase estima-
tion variance and undermine detection power.

We next looked at the consistency of the detected DM CpG sites
from different methods. We selected top 1000 CpG sites (ranked by
q-values) detected from different methods, then a Venn diagram for
luminal B-basal comparison is shown in Figure 4B (results for the
rest comparisons are shown in Supplementary Fig. S5). The

overlapped number is 634 for luminal B-basal comparison, and the
average overlapped number is 377 for all 6 pairwise comparisons.
We also noticed that, although both InfiniumDM and limmaPurity
incorporate purity into the linear model, their overlap is not very
high (449 on average). In contrast, the number of overlaps is 855 be-
tween InfiniumDM and InfiniumDM_ctl. This observation is related
with how tumor purity is adjusted in the limmaPurity model, and
again promotes the use of multiplicative formulations instead of
additive models.

The major difficulty to evaluate the performance of a DM calling
method for real tumor samples is the lack of ground truth, i.e. true
differential methylated CpG sites. We therefore resorted to an indir-
ect strategy as follows. We downloaded reduced representation
bisulfite sequencing (RRBS) data for 44 breast cell lines from the
CCLE database (https://portals.broadinstitute.org/ccle), the PAM50
subtyping annotations of 84 breast cancer cell lines from Dai et al.
(Dai et al., 2017). Eventually we obtained 24 breast cancer cell lines
with both RRBS and subtyping information, including 11 cell lines
of luminal A subtype, 5 cell lines of luminal B subtype and 8 cell
lines of her2 subtype. The RRBS data downloaded from CCLE have
summarized methylation of CpG sites into gene levels. To make a
fair comparison, we calculated the gene-level DNA methylation in
Infinium 450k array data by averaging the beta values of CpG sites
within promoter regions (1 kb upstream of TSS) (Fan et al., 2016;
Zheng et al., 2017). Despite the differences between the DM using
single CpG site versus gene context, we believe such benchmark still
provides useful information in evaluating the proposed methods.
Then, DM genes are defined as P-values less than 0.05 by different
methods. For any pair of subtypes, we used DM genes from breast
cancer cell lines as standard to evaluate the performance of the five
methods. The true DM genes are defined as the ones with minfi
P-values smaller than 0.05.

We first examined the overlapping DM genes detected by differ-
ent methods in the above three pairwise subtype comparisons.
Fisher’s exact test is applied to check the significance of overlap be-
tween detected and true DM genes from different methods. It is clear
that InfiniumDM and InfiniumDM_ctl show much smaller P-values
compared with other methods in two of three between-subtype com-
parisons (Fig. 4C). Taken luminal A-versus-her2 as an example, the
P-values by InfiniumDM_ctl and InfiniumDM are 1.57e–7 and
1.48e–7, whereas the P-values are 0.062, 0.044 and 0.1 by minfi,
limma and limmaPurity, respectively. Even though limmaPurity
obtained the smallest P-value (�0.005) compared with other meth-
ods in luminal A-luminal B comparison, InfiniumDM still has sig-
nificant overlaps between detected DM genes and true DM genes
(P-value is 0.04). Overall, our proposed method provides better de-
tection accuracy than existing methods.

Next, we evaluated the accuracy of predicted DM genes by dif-
ferent methods using the DM genes from cell lines comparisons as
benchmark. Figures 4D–F show the True Discovery Rate (TDR)
curves for three between-subtype comparisons. We observed higher
performance of InfiniumDM_ctl and InfiniumDM at all top-ranking
genes than other three methods. For example, for luminal A-her2
comparison, among top 200 DM detections, 10.5% of them are true
DM genes for InfiniumDM and InfiniumDM_ctl, whereas the per-
centages are 9.5%, 9.5% and 7% by minfi, limma and limmaPurity,
respectively. Overall, the TDRs from minfi and limma are very simi-
lar, limmaPurity provides better accuracy compared with them,
InfiniumDM_ctl and InfiniumDM obtain the best accuracy among
all methods in the three comparisons. However, we also noticed that
the overall TDRs by all methods, including existing and our pro-
posed ones, are quite low (Fig. 4D–F). This is due to data type differ-
ences between the mixed data (obtained from TCGA tumor tissues
with DNA methylation 450k array) and benchmark data (24 CCLE
cell lines with RRBS). These two data are actually different in a few
aspects, i.e. they cover different CpG sites, and the selected cell lines
may not fully capture the sample characteristic of real tumor sam-
ples. In a word, our current gene-based DM is more like a silver
benchmark rather than a gold standard.

Finally, we looked at the functional enrichment of the identified
DM genes. For each between-subtype comparison, we first identified
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Fig. 4. Differential methylation results for BRCA samples from the TCGA database.

(A) Numbers of differential methylated CpG sites (FDR < 0.01) by different DM

calling methods. (B) Venn diagram of top 1000 DM CpG sites (ranked by q-values)

between luminal B and basal subtypes by different methods. (C) Overlaps between

predicted and true DM genes for luminal A-versus-luminal B, luminal A-versus-her2

and luminal B-versus-her2 by different methods. True DM genes are defined as

genes with minfi P-value smaller than 0.05 between breast cancer cell lines with

annotated PAM50 subtypes using RRBS data. Predicted DM genes are defined as

genes with P-value smaller than 0.05 by different methods using Infinium 450k

array data. (D–F) TDRs for different methods in the above three between-subtype

comparisons. (G) Functional enrichment of DM genes (detected from top 1000 DM

sites) by InfiniumDM between basal and her2 subtypes
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top 1000 DM CpG sites by each method, and then mapped these
CpG sites to genes, respectively. The obtained genes are then input
to Metascape (Zhou et al., 2019) to explore their functional enrich-
ments. We only take basal-her2 comparison as an example, the rest
between-subtype comparisons are shown in Supplementary Figures
S6–11. We got 23 enriched terms (q-value < 0.05) that are detected
only by InfiniumDM (q-values by minfi, limma and limmaPurity all
exceed 0.05). A list of all 23 terms and their q-values by different
methods is provided in Supplementary Table S1. If focusing on the
top 20 most enriched terms by InfiniumDM (Fig. 4G), we found 10
terms that are only detected by InfiniumDM compared with the
other 3 methods and many of them are associated with breast cancer
development, response to chemical therapy and subtyping according
to the literature. For example, the GO term 0030155 (regulation of
cell adhesion) is reported to control the tumorigenicity of cells of
basal subtype and block cancer progression (Chekhun et al., 2013).
GO: 0001568 (blood vessel development, q-value 7.82e–3) is associ-
ated with basal subtype (Bujor et al., 2018), and can be used for
stratification of patients who might benefit from therapies targeting
angiogenesis. GO: 0043627 (response to estrogen, q-value is 2.68e–
2) is known as a gold standard for breast tumor subtyping (Rieger
et al., 2010). We also conducted further enrichment analysis using
the exact location of top 1000 CpG sites (ranked by q-values) from
different methods for basal-versus-her2 comparison, instead of
genes, using EnrichR (Kuleshov et al., 2016). Compared with exist-
ing methods limma, limmaPurity and minfi, our proposed methods
InfiniumDM and InfiniumDM_ctl identified much more pathway
terms that were directly related with cancer (Supplementary Fig.
S12). For example, ‘Basal cell carcinoma’ and ‘Melanogenesis’ are
exclusively identified by InfiniumDM and InfiniumDM_ctl. Among
the existing methods, limmaPurity is the only one that identifies
some cancer-related terms, such as ‘Gastric cancer’, ‘Breast cancer’
and ‘Pathways in cancer’. However, these terms rank even higher in
our proposed methods, suggesting that InfiniumDM and
InfiniumDM_ctl can identify more relevant results than existing
methods.

In conclusion, real data analyses in this section demonstrate that
our proposed method can provide more sensitive, accurate and bio-
logically meaningful results compared with other methods serving
similar purpose.

4 Discussion

In this paper, we comprehensively investigated the impact of tumor
purity in differential methylation analysis between two groups of
tumor samples from the same cancer type. We found that uneven
distributions of tumor purities between two groups of tumor sam-
ples will lead to both false positive and negative DM sites if not
properly accounted for. We showed, through rigorous statistical for-
mulation and simulation studies, that the common methods for dif-
ferential analysis with the consideration of tumor purity by using
purity as an additive covariate is not appropriate that it fails to in-
corporate purity in a multiplicate framework. Thus, we proposed a
method using a generalized least square model to account for tumor
purity and detect DM sites between two groups of tumor samples.
Our model adopts a multiplicative formulation to account for tumor
purity in detecting differential methylation, thus eliminates bias
from a naı̈ve model by only including tumor purity as an additive
covariate. Simulation and real data analyses demonstrate that our
approach provides more accurate and thus favorable results.

The proposed model actually represents a wide class of differen-
tial analysis methods, and can be easily extended to other related
problems. For example, we can generalize the proposed model to
differential methylation analysis between two distinct cancer types
where the normal contaminations are allowed to be different
(Supplementary Material S1). Moreover, the hypothesis testing is
also very flexible. We can test whether the means of normal tissues
in two groups are the same, whether the changes between cancer
and normal tissue in two groups are the same and whether the
means of the pure cancer tissues are the same. For all these tests, we

have performed simulations and also obtained reasonable results
(Supplementary Figs S13–S15).

Finally, the essence of the data modeling and statistical inference
of our method can be applied to other platforms, and even other
types of genomics data. In addition, our model can be further
extended to incorporate more cell type information from cancer
studies. Although difference between cancer and normal cells con-
tributes the most and biggest differences in cancer data, the distinc-
tions of different normal or cancer cell types can be further included
in our framework. The assessment of these extensions is beyond the
scope of this study. We will continue the exploration in our future
works.
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