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ABSTRACT

Conventional DNA bisulfite sequencing has been
extended to single cell level, but the coverage
consistency is insufficient for parallel comparison.
Here we report a novel method for genome-
wide CpG island (CGI) methylation sequencing for
single cells (scCGI-seq), combining methylation-
sensitive restriction enzyme digestion and multiple
displacement amplification for selective detection
of methylated CGIs. We applied this method
to analyzing single cells from two types of
hematopoietic cells, K562 and GM12878 and small
populations of fibroblasts and induced pluripotent
stem cells. The method detected 21 798 CGIs (76%
of all CGIs) per cell, and the number of CGIs
consistently detected from all 16 profiled single cells
was 20 864 (72.7%), with 12 961 promoters covered.
This coverage represents a substantial improvement
over results obtained using single cell reduced
representation bisulfite sequencing, with a 66-fold
increase in the fraction of consistently profiled CGIs
across individual cells. Single cells of the same
type were more similar to each other than to other

types, but also displayed epigenetic heterogeneity.
The method was further validated by comparing
the CpG methylation pattern, methylation profile of
CGIs/promoters and repeat regions and 41 classes
of known regulatory markers to the ENCODE data.
Although not every minor methylation differences
between cells are detectable, scCGI-seq provides
a solid tool for unsupervised stratification of a
heterogeneous cell population.

INTRODUCTION

DNA methylation occurs at cytidine residues of
mammalian genomic DNA, principally in CpG
dinucleotides (1). In most mammalian DNA there is a
relative deficiency of CpG sites, which tend to cluster in
regions of 300 to 3000 bp known as CpG islands (CGIs).
There are 28 691 CGIs in the human genome, representing
0.7% of the whole genome (2). Approximately 40% of
promoters of mammalian genes, including those of most
house-keeping genes, are in CGIs. Although the role of
methylation of the CpG sites outside of CGIs and of
cytidines outside of CpG dinucleotides are increasingly
studied (3–5), the methylation status of these CGIs or
promoters is still considered a more profound regulator

*To whom correspondence should be addressed.Tel: +1 203 737 2616; Fax: +1 202 7372286; Email: PanVictor@qq.com
Correspondence may also be addressed to Rong Fan. Tel: +1 203 432 9905; Fax: +1 203 432 1061; Email: rong.fan@yale.edu
Correspondence may also be addressed to Franziska Michor. Tel: +1 617 632 5045; Fax: +1 617 632 4222; Email: michor@jimmy.harvard.edu
†These authors contributed equally to the paper as first authors.

C© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/45/10/e77/2953493 by guest on 01 M

arch 2023



e77 Nucleic Acids Research, 2017, Vol. 45, No. 10 PAGE 2 OF 13

of the corresponding genes. Specific changes in the
methylation states characterize various cell types and
subtypes associated with development, differentiation,
carcinogenesis, immune response and other biological
processes (1,6–10). The effects of DNA methylation on
cellular processes lead to complexity and heterogeneity
among individual cells, and require a highly precise and
robust method for elucidation.

Conventional methods for DNA methylation
profiling––including bisulfite sequencing (BS), differential
DNA binding (such as MeDIP) and resistance to
methylation-sensitive restriction endonuclease (MRE)
digestion––all require large amounts of DNA to yield
confident readouts (11–15). Recently, single cell reduced
representation BS (scRRBS) and genome-wide BS (scBS
or scWGBS) (16–19) were reported to enable the analysis
of the CpG methylome scaled down to a single cell, thus
detecting cell-to-cell variability of methylation states both
within and between different cell populations (20). scBS
demonstrated high cumulative coverage (∼81% CGIs)
but limited consistency, to date, with only as much as
∼21% CGIs among 16 single cells at the cost of whole
genome deep sequencing. An in-silico data combination
of pre-grouped single cells, each with shallow sequencing,
demonstrated an increase in overall coverage (18,19).
However, the subgroup structure of a population of
cells is usually hard to define in advance at the single
cell resolution, preventing this strategy from application
to many cases (20). scRRBS significantly reduces the
number of reads needed and lowers the cost, but the
consistency––defined as the intersection of all CGIs
covered across single cells––remains compromised (1.13%
CGIs among 16 samples). The observed poor consistency
is attributed in part to the harsh chemical processing
required for DNA bisulfite treatment, which is prone
to producing DNA breakage and loss. In short, while
these approaches enabled single cell genome-scale DNA
methylation mapping, they still have major limitations.
Thus, alternative methods are needed for single cell
genome-wide CpG methylation analysis with a highly
consistent readout, at least at CGIs, and with a reduced
cost per cell.

MRE-based approaches (13,14,21–23) provide a direct
characterization of target CGI methylation requiring no
harsh bisulfite conversion procedures, thus potentially
reducing the random loss of profiled CGIs from single
cells. Although MRE-approaches have been applied to
single cell analysis (24–26), they were used to detect only
a limited number of loci rather than CGIs at the genome
scale. To significantly improve upon these methods,
we here combined MRE digestion for distinguishing
methylated versus unmethylated CGIs with multiple
displacement amplification (MDA) that selectively
amplifies methylated CGI-containing long DNA strands
but not short unmethylated CGI fragments, followed by
massive sequencing. We demonstrate not only genome-
scale coverage, previously realized only through bisulfite
sequencing, but also significantly improved consistency at
the single cell level, representing a novel approach with
major advantages over existing methods for single cell
methylome analysis.

MATERIALS AND METHODS

Cells used in this study

Cell lines K562 and GM12878 were prepared as described
in (27). Fibroblast and iPS cells were prepared as described
in (28).

Overall experimental design and procedure of scCGI-seq

For the TEST sample, single cells were delivered to
individual polymerase chain reaction (PCR) tubes and
lysed to release genomic DNA, which was digested with
a set of infrequent cut MREs (RE1, a specific MRE or a
combination of multiple MREs). This digestion gave rise
to cut highly enriched in CGIs and other sequences with
high CpG content. The digested DNA was immediately
subjected to MDA. The amplicon was then digested
with the second set of restriction endonucleases (RE2,
one enzyme, or a combination of REs, of which each
was separately applied to digest different aliquot of the
amplicon). The RE2 cuts frequently most CGIs in genome.
The methylation control (MC) sample was processed with
the same procedure but without the RE1 digestion step.
With the fragments generated with RE2, next generation
sequencing library was constructed and the insert fragments
with ∼50–500 bp in length were enriched for sequencing
(Figure 1). The same procedure was applied to low
quantity cell (LQC, here 10–100 cells) samples; however, the
bioinformatic analysis algorithm for LQC samples differs
from that for single cells.

Discrimination and selective amplification of methylated
against unmethylated CpG island (CGI) sequences

Cells were suspended and washed twice with phosphor-
buffered saline (PBS). Single cells were picked up with a
1–10 ul pipette and dispensed into individual PCR tubes
with each cell transferred with ∼1 �l volume of sheath PBS.
Three microliters (3) genomic lysis buffer (Zymo Research)
was then added to each tube and the cell was lysed in 10
min at room temperature. DNA in the lysate was purified
by ethanol precipitation using Dr GenTLE precipitation
carrier (ClonTech). The purified DNA sample was treated
in a 2-step reaction with a set of MREs in cocktail as RE1,
including Cfr42I (SacII), PdiI (NaeI), Eco52I (EagI) and
PteI (BssHII)(FastDigest enzyme from Thermal Scientific
Inc.), called 4E collectively. Step 1 is the treatment with
Cfr42I and PdiI in 1 × Tango Buffer at 37◦C for 1 h. Step
2 is the treatment with Eco52I and Ptel after adjusting
the buffer to 2 × Tango Buffer and incubating at 37◦
C for 1 h. Afterward, these MREs were heat-deactivated
at 70◦C for 10 min. The digested DNA sample obtained
was immediately amplified using REPLI-g UltraFast Mini
Kit (Qiagen) following the manufacturer-recommended
protocol except that denature and neutralization steps
were skipped. The amplicons were combined with negative
controls (no cells but PBS only), which did not show any
visible band on electrophoresis gel. The amplified DNA
was purified using genomic DNA clean & concentrator kit
(Zymo Research). Usually approximately 3–4 �g of DNA
amplicon was obtained, sufficient for PCR evaluation and
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Figure 1. Schematic representation of CGI-seq. TEST: single cell being studied. Methylation control (MC): cells that are used to define the detectable
CGIs or any other accessible methylated regions (AMRs), sharing the same genome as the TEST. For CGI-seq analysis, the genomic DNA is classified
into three classes of sequences: Me-CGIs (representing methylated CGIs, and more generally, Me-AMRs) indicated as a red line, Um-CGIs (unmethylated
CGIs, and generally Um-AMRs) indicated as a blue line and undetectable regions indicated as a black line. Green lines are amplified sequences. Solid
dot: Me-CpG sites. Hollow dot: Um-CpG sites. The intact gDNA is released from cell (step 1) and digested with RE1 (TEST) or no digestion (MC) (step
2), followed by MDA amplification (step 3). The amplification product is then digested by RE2 (step 4), in which the short fragments are converted t‘o a
library and subjected to massive sequencing (step 5). The reads are aligned to the genome (step 6) and the methylation status of the AMRs (particularly
CGIs) is determined (‘Materials and Methods’ section). The AMRs detected in both the TEST and the MC are called Me-CGIs (or Me-AMRs). The
AMRs uniquely detected in the MC but not in the TEST are called Um-CGIs (or Um-AMRs) of the TEST. RE1 (four MREs in combination: Cfr42I
(SacII), PdiI (NaeI), Eco52I (EagI) and PteI(BssHII), FastDigest enzyme from Thermal Scientific Inc.) distinguishes Me-CGIs (Me-AMRs) from Um-
CGIs (Um-AMRs). MDA selectively depletes Um-CGIs (Um-AMRs) of the TEST and amplifies Me-CGIs (Me-AMRs). RE2 (either BstUI alone, or a
combination of 3 separate REs (ABH: AciI, BstUI and Hinp1I from NEB)) generates fragments specifically enriching CGI sequences (and other CG-rich
regions) from non-CGI sequences.

library construction. This above was for the TEST sample.
The control DNA (MC) was conducted through the same
process except that no RE1 digestion steps were applied.

PCR to evaluate the quality of amplicon

The quality of the amplicons after purification was
evaluated using the procedure below. Two sets of PCR
primers were designed. The first set of primers flanked
known methylated cutting sites (termed as primers CGP),
and the second set flanked known unmethylated cutting
sites (termed as CGN). When these primers were used to
examine the amplicons, the control sample (MC) amplicons
showed defined size of bands for both sets of primers,
whereas the TEST samples only showed the expected bands
for the first set of primers. The sizes of PCR products and
the sequences of primers used are the following: CGP1,
160 bp, TCACTGCAAGCTCTGCCTCT, CGGATCAC
GAGGTCAGAAGA; CGP2, 178 bp, CATGCCTATAAC
CCCAGCAC, ATTCTCCTGCCTCAGCCTCT; CGN1
(with gene C19), 185 bp, TAGACCGGGGTCGGGACA
GGA, TGCCCGACAGGGCGTGTTTGA; CGN2 (with
gene ACTB), 221bp, GTGGACATCTCTTGGGCACT,
GACCCACCCAGCACATTTAG.

Library construction for reduced representation sequencing

To enrich the sequences for CGIs and other CpG-rich
regions, 1.5 �g of amplified DNA from each sample was
divided into three equal amounts and digested by one
of the three RE2 reagents respectively: AciI, BstUI and
Hinp1I (NEB), called ABH collectively. The condition of
incubation is 3 h at 60◦C for BstUI and at 37◦C for AciI
and Hinp1I. It was also tested for using BstUI alone as
RE2 for comparison. After deactivation of the enzymes
with the binding buffer of the purification kit DNA clean
& concentrator kit (Zymo Research), the digested DNA
samples were pooled for purification and then subjected to
the reaction for End-repair and A-addition using NEBNext
Ultra End Repair/dA-Tailing Module at 20◦C for 1 h and
then 65◦C for 30 min, followed by Illumina sequencing
adaptor ligation using NEBNext Ultra Ligation Module at
20◦C for 30 min. The sample obtained was purified and size
selected through an E-gel run (Invitrogen, EX 2% Agarose)
into three pieces, which were separately purified, and each
piece was eluted in 20 �l of elution buffer. All together, this
covers the fragment size ranging from 50 to 500 bp. One-
fourth of each piece of eluted DNA was applied to library
PCR reaction (6–8 cycles) in 50 �l of reaction volume using
Phusion high fidelity PCR master mix with GC buffer. The
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library products were size selected again on E-gels (size
range from 175 to 625 bp), and the concentration and size
profile were measured with a bioanalyzer (Agilent) before
sequencing (Illumina HiSeq2500). A set of eight samples
were pooled for multiplex sequencing at 75 × 2 PE seq with
30% of additional random-end library spiked-in for each
lane.

The overall strategy for bioinformatic analysis

Firstly, the DNA regions (genomic blocks) in a known
genome that are detectable with the procedure described
above are termed as accessible methylation regions
(AMRs), which theoretically include most CGIs, some
promoters and other CpG-rich regions. These AMRs
are determined using the MC data. The sequences not
detectable using this approach are non-CGI and non-
promoter regions, which however also contain small
percentages of CGIs and promoters. Further, in each TEST
sample, the AMRs are further identified as methylated
(Me-) AMRs (Me-AMRs, particularly Me-CGIs) and
unmethylated (Um) AMRs (Um-AMRs, particularly
Um-CGIs). Secondly, an AMR is a sequence block that
contains at least one informative fragment. An informative
fragment is a short RE1 fragments (<3500 bp) generated
when the given genome is in-silico digested with RE1,
and contains at least one in-silico digested RE2 fragment
with size from 50 to 500 bp within the RE1 fragment
(these RE2 sites are called informative sites). These
detectable CGIs or promoters are called informative CGIs
or promoters; correspondingly the other non-detectable
CGIs or promoters are called non-informative CGIs or
promoters. As shown (Figure 1), the TEST samples are
digested with both RE1 and RE2 with MDA conducted in
between. The MC is digested with RE2 only after MDA.
The MC data is used to determine all possible AMRs.
When an AMR in a TEST sample shows statistically
similar or more reads than MC samples, it is determined as
Methyleted (Me-AMR, such as Me-CGI, Me-promoter);
when an AMR in a TEST sample shows no or close to
zero reads as compared to MC samples, it is called Un-
methylated (Um-AMR, such as Um-CGI, Um-promoter).

In-silico cut

We searched RE1 and RE2 cutting sites in the hg19 version
of the human reference genome by using the ‘restriction’
command line of EMBOSS software package (29). The RE1
fragments were removed if larger than 3.5 kb because large
fragments have no different amplification efficiency between
TEST and MC samples (described in the main text, also see
Figure 2A and Supplementary Figure S1a), and therefore
do not provide an informative signal. Next, RE2 sites
within the retained RE1 cutting fragments were searched.
The RE2 fragments within 50–500 bp were used directly
for sequencing library construction, and the corresponding
cutting sites were defined as the informative sites. The
filtered RE1 fragments with informative RE2 sites were
defined as the informative fragments. The sequencing data
of these informative fragments allows for determination
of methylation status inAMRs (CGIs, promoters or other
genomic blocks).

Methylation score of LQC (low quantity of cells) sample

The raw sequence reads were mapped against the hg19
version of the human reference genome usingBowtie2 (30)
with default parameters. Bedtools (31) was then used to
obtain the read counts for each RE2 cutting site. Only
reads that start from RE2 sites, and covered in a <3500
bp RE1 fragment were defined as informative reads (sites)
and thus retained for the subsequent analysis (kept reads).
All reads in both TEST and MC samples were normalized
by RPM (Reads per million). We then obtained a CpG
methylation score for each RE2 cutting site by using the
following equation:

MLQ
score (LQ) =

[
log2

(
Ntest+s
Nmc+s

)
, Nmc > C×106

Ttest

NA , Nmc ≤ C×106

Ttest

]

where Ntest denotes normalized reads in the TEST sample,
and Nmc denotes normalized reads in the MC sample. To
obtain a reliable un-methylation signal, it requires Nmc to
be larger than a certain cutoff given by the ratio between
C million reads and the total number of informative reads
in the corresponding TEST sample (Ttest), up to a constant.
C is defined as the fold of 1 RPM reads in TEST sample
and is dependent on sequence depth of TEST sample. s
represents the pseudo count added to ensure the validity of
log2 transformation and is set to 1/10th of the Nmc cutoff.

Methylation score of single cell samples

Raw sequence reads were mapped against the hg19 version
of the human reference genome usingBowtie2 with default
parameters. Read counts for each informative fragment,
instead of each informative site were calculated. Merging
reads in each informative fragment generated with RE1
leads to loss of resolution, but provides greater read
counts. Based on the experimental design, the read counts
from each informative fragment as a whole can represent
the associated AMR (such as a CGI). When multiple
informative fragments are available for an AMR, the values
of all informative fragments are combined.

Therefore, the DNA methylation states of informative
fragments in a single cell can be classified into three groups:
methylated (M or Me), un-methylated (U or Um) and half-
methylated or methylation heterozygote (H or He, one allele
is Me and the other allele is Um). For the methylated
fragments, similar numbers of reads are detected from
both TEST and MC samples, which means Ri

test (read
counts of fragment i in the TEST sample) is increased with
and dependent on Ri

mc (read counts of fragment i in the
MC sample). Un-methylated fragments are supposed to
have no sequence reads from the TEST sample, but some
reads from the MC sample, such that Ri

test is always near
0 and has no correlation with and is not dependent on
Ri

mc. Half-methylated fragments account for allele-specific
methylation, in which Ri

test increases with and is dependent
on Ri

mc, but the reads from the TEST sample are much
lower than those from MC sample. Therefore, we applied a
three-component mixture model to infer the probability of
a fragment belonging to one of the methylation states using
the EM algorithm.
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Figure 2. Demonstration of CGI-seq. (A) The qPCR shows the depletion of 2.3 kb and shorter fragments but selective amplification of 4.4 kb and longer
fragments with MDA amplification. Lambda DNA was cut with HindIII and subjected to MDA, followed by qPCR with primers located in the center of
each fragment. A 23.1 kb fragment is taken as the control to represent perfect amplification, and the fold reduction of amplification efficiency for a variety
of fragments is shown. (B) A screenshot of IGV (Broad Institute, using hg19) for the RE1 and RE2 (BstUI) sites around 2 CGIs on chromosome 22. Both
RE1 and RE2 are highly enriched in the two CGIs displayed, while RE1 cuts very rarely. (C) A typical distribution of sequencing reads for the TEST
(brown) versus MC (blue) sample along with the distribution of RE1 and RE2 shown with a screenshot of IGB (bed file showing on Affymetrix, hg19).
A Me-CGI (CpG 129) and an Um-CGI (CpG 160) are shown for the TEST (K562-100-cell sample t2 is shown with Bam file). Only the CGIs in-silico
covered by both RE1 and RE2 (purple horizontal bar) are theoretically qualified as AMR in our design, which in practice have sequencing reads displayed
in the MC control; therefore these two CGIs are of practical AMRs in this analysis. The reads of AMRs are regarded as informative reads. When a certain
number of reads, see ‘Materials and Methods’ section) are present in the TEST, the CGI is called Me-CGI (CpG 129); when no significant read is seen in
TEST, it is called Um-CGI (CpG 160). The read numbers for different sequences are variable; six reads/sequence are shown here as an example.

The joint likelihood of observing read counts Ri in
fragment i belonging to three methylation states (lM(i ),
lH(i ), lU(i )) can be calculated by multiplying different
conditional likelihood functions of observing read counts
Ri in fragment i in the corresponding methylation state
and the mixing coefficient π . Since Ri

test linearly increases
with Ri

mc on a log scale for the methylated and half-
methylated states but with different slopes and is not
dependent on Ri

mc for the un-methylated states, a log-
normal distribution was chosen for the methylated and
half-methylated states, respectively, whereas a Poisson with
over-distribution (negative binomial) was chosen for the un-
methylated state. Thus we have,

lM (i ) = πMN(LRi
test|β0

M + β1
MLRi

mc, σ
2
M)

lH (i ) = πH N(LRi
test|β0

H + β1
H LRi

mc, σ
2
H)

lU (i ) = πU NB(Ri
test|exp(β0

U + β1
U LRi

mc), θU)

where Ri
test and Ri

mc are the read counts of fragment
i in TEST and MC samples, and LRi

test = log2(Ri
test +

K ), and LRi
mc = log2(Ri

mc + K), with pseudo count K
equals to 0.5.π. with subscripts M, H or U denoting the

mixing probabilities of methylated, un-methylated or half-
methylated states. We obtained the maximum likelihood
estimates using the EM-algorithm. In the initialization step
of running this algorithm, the parameters β0, β1, σ 2, θU
and π. (subscript. represents M, H or U) are set as random
numbers. These parameters are dependent on LRi

mc or Ri
mc;

here we modeled this dependence using a (generalized)
linear regression framework by assuming linearity on log-
scale.

In the E-step, the probability of fragment i belonging to
each of the three methylation states (G = M, H or U) is
denoted asγM(i ), γH(i ) or γU(i ), which can be calculated
using the following equations:

lT (i ) = lM (i ) + lH (i ) + lU (i )

γM (i ) = P (G = M) = lM (i )
lT (i )

γH (i ) = P (G = H) = lH (i )
lT (i )

γU (i ) = P (G = U) = lU (i )
lT (i )
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Where G is the unobserved states, M, H and U are the three
methylation states.

Then in the M-step, we can update the parameters
π.based on these probabilities:

πM =
∑N

i = 1 γM (i )
N

πH =
∑N

i = 1 γH (i )
N

πU =
∑N

i = 1 γU (i )
N

Together, the log-normally related parameters
β0

M, β1
Mandσ 2

M, β0
H, β1

Handσ 2
H can be updated from

the two following log-linear regression models:

E
(
LRi

test|LRi
mc, G = M

) = β0
M + β1

MLRi
mc

E
(
LRi

test|LRi
mc, G = H

) = β0
H + β1

H LRi
mc

where β̂0
. and β̂1

. are equal to the weighted least square
estimates of the corresponding log-linear regression model,
with weights equal to γ.(i ).

argmin
β0

. , β1
.

N∑
i = 1

γ. (i )
(
LRi

test − (
β0

. + β1
. LRi

mc

))2

and σ̂ 2
. is equal to the weighted residual sum of squares of

the corresponding log-linear regression model, with weights
equal to γ.(i ).

Similarly, the dispersed Poisson parameters
β0

U, β1
UandθU can be estimated from a negative binomial

regression model with log as the link function:

log
(
E

(
Ri

test|Ri
mc, G = U

)) = β0
U + β1

U LRi
mc

where β̂0
U and β̂1

U are equal to the weighted least square
estimates of negative binomial regression model, with
weights equal to γU(i ).

argmin
β0

U , β1
U

N∑
i = 1

γU (i )
(
LRi

test − exp
(
β0

U + β1
U LRi

mc

))2

and θ̂U is equal to the dispersion estimated in the negative
binomial regression, which can be obtained from the output
of the glm.nbfunction of the MASS package in R.

With these updated parameters, we perform another E-
step to re-evaluate (γM(i ), γH(i ), γU(i )) and iteratively run
the algorithm until it converges.

In the end, we use the following stopping rules to monitor
the EM iterative runs. Define εM, εHandεUas follows:

εM =
∑N

i=1

∣∣∣γ j
M (i ) − γ

j−1
M (i )

∣∣∣
N

εH =
∑N

i=1

∣∣∣γ j
H (i ) − γ

j−1
H (i )

∣∣∣
N

εU =
∑N

i=1

∣∣∣γ j
U (i ) − γ

j−1
U (i )

∣∣∣
N

If all of them are less than a given ε0, with the default
set to 0.005, then the EM runs will be stopped and we will
report the parameter estimation.

Finally, we summarized the probability values into a
single measure,

MSC
score (i ) = γM (i ) + γH (i ) /2

to obtain the methylation score for each fragment i in single
cells. The code is available at https://bitbucket.org/mthjwu/
sccgi-seq.

Region-based DNA methylation, such as the methylation
of an informative CGI or promoter, was calculated
by averaging the methylation levels of all informative
fragments (or the single informative fragment if only one
such fragment is available) of the defined CGI (2) or
promoter. A promoter region was defined as 3 kb regions
upstream and downstream of the TSS (transcription start
site) based on NCBI human RefSeq annotation. One
representative TSS was chosen for each gene to avoid double
counting.

Bulk methylation and ChIP-Seq data

The processed DNA methylation data, including Infinium
human Methylation 450K array (M450K) and Reduced
Representation Bisulfite Sequencing (RRBS), of K562
and GM12878 were obtained from the UCSC ENCODE
website. ChIP-Seq peaks of multiple different classes
of regulatory markers (such as variants of histone
modifications)––related proteins of K562 and GM12878
were also downloaded from the UCSC ENCODE website.
We calculated the average methylation score of all the peak
regions for each of these classes of regulatory markers, and
compared the average methylation score among single cell,
LQC and bulk data. CGI annotation in the human genome
was obtained from UCSC CGI track (2). CGI annotation
in mouse was obtained from CAP-seq (CXXC affinity
purification plus deep sequencing) experiments (32), the
promoter regions and CGIs were defined and analyzed the
same way as described in the section above.

All analyses were done in the R environment and with
Bioconductor packages. Ward method in heatmap.2 was
used to cluster samples, and Pearson’s correlation was used
to calculate the distance matrix.

RESULTS

Design of scCGI-seq

The design of the scCGI-seq method (called CGI-seq when
the sample is not a single cell) is based on digestion of
the single cell to be profiled (‘TEST’) with two sets of
MREs as well as MDA (Figure 1). The amplicon was
then processed with CGI-specific enzymes to generate short
fragments consisting of methylated CGI sequences that are
then sequenced. To infer the methylation state of individual
regions, the results are then compared to those obtained
using a ‘MC’ sample which is processed in parallel but
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without digestion by the first set of MREs. A region
detected in both the MC and the TEST sample is called a
methylated region in TEST; a region detected in the MC
but not in the TEST sample is then called unmethylated in
TEST. All methylated regions and unmethylated regions are
collectively called AMRs, which is determined by MC, while
a region not detectable in MC is not considered as a region
covered by scCGI-seq.

Our method is based on MRE to replace bisulfite
conversion for the initial discrimination of the methylation
status of every AMR, which minimizes harsh DNA
treatment, and eliminates other processes like end-repair
and adapter-ligation required for RRBS, prior to DNA
amplification (Figure 1). The amplification was performed
with MDA, a robust and mild isothermal method (33–
37). This approach works efficiently for long DNA
fragments but very inefficiently for short DNA fragments,
which has previously been considered a major limitation
for MDA. In contrast, here we took advantage of
this unique property of MDA to selectively amplify
methylated CGIs because they remain intact and are
mostly embedded in long DNA fragments whereas the
unmethylated CGIs become short fragments upon MRE
digestion. We quantitatively examined this property using
a set of template DNA fragments of known sizes and
found that the MDA amplification efficiency exhibited
an abrupt drop as the template size decreased. DNA
fragments larger than ∼4.4kb were efficiently amplified but
fragments smaller than 2.3 kb showed >50-fold reduction
of amplification efficiency (Figure 2A); the analysis of
the whole spectrum of fragment sizes further confirmed
this observation (Supplementary Figure S1a). Applying
MDA to a pool of MRE-generated DNA fragments
thereby selectively enriches intact methylated regions while
depleting unmethylated regions.

CGI methylation often displays a bimodal pattern with
the majority of CpG sites in a CGI either methylated or
unmethylated (1,13,38–40). At the single cell level, this
bimodality is even more pronounced (17–19). For a given
CGI of a single cell, a call of a region that is both methylated
and unmethylated indicates allelic heterozygosity of CGI
methylation (41). In our approach, a set of MREs was
carefully selected and characterized such that the optimized
MRE combination recognizes the maximum possible
number of sites in CGIs, with minimal sites available
in non-CGI sequences, so as to retain the integrity of
methylated CGIs with their flanking regions for efficient
MDA amplification. After optimization, four MREs with
6-nucleotide recognition sites (BssHII, EagI, NaeI and
SacII) were combined as the initial set of MRE (first set
of restriction enzyme in this system, or RE1) to cut the
genome (Supplementary Table S1, Figure 1, Supplementary
Figures S1, 2 and ‘Materials and Methods’ section). In
silico analysis demonstrated that the RE1 cutting sites were
enriched in CGIs; the frequency of cutting sites in CGI
sequences was approximately 4.5 sites per CGI, 185-fold
greater than that in non-CGI sequences in terms of cutting
sites per nucleotide (Supplementary Table S1 and Figure
2B). Among the 28 691 human CGIs (2), 23 235 (81%)
of CGIs contained at least two cutting sites. This selective
digestion permitted the whole genome to be efficiently

amplified except for unmethylated regions. The amplicon
was then digested by the second set of restriction enzymes
(RE2) that have relatively frequent cutting sites at all AMRs
(particularly CGIs) and thus convert the methylated regions
into short fragments (50–500 bp) appropriate for library
construction and sequencing. A qualified RE1 fragment
(<3.5 kb) combined with one or multiple qualified RE2
fragments (each 50–500 bp) represents an informative
fragment. We chose BstUI alone or a combination of AciI,
BstUI and HpaII (named ABH) as the RE2 to digest
the amplicon (Supplementary Table S2, Figure 2B, C and
Supplementary Figure S2). When BstUI was used as RE2,
we could theoretically detect 113,037 informative fragments
and 187,696 RE2 cutting sites in the whole human genome.
When ABH was used as RE2, the informative fragments
were theoretically increased to 147 240 and the total RE2
cutting sites to 879 383. The total number of CGIs that can
be detected (containing at least one informative fragment)
in theory is 22 473 with ABH and 20 342 with BstUI, and
the number of promoters detectable in theory (containing at
least one informative fragment in 3 kb up and down stream
of the transcription starting site) is 15 747 with ABH and 14
636 with BstUI, respectively. This RE2 treatment resulted
in a reduced representation and yet consistent coverage
of the AMRs. This procedure provided a highly selective
and efficient means toward sequencing of the methylated
regions.

We applied the procedure outlined above to each
TEST sample in order to differentiate methylated from
unmethylated regions. Based on the data from TEST and
MC samples, we then obtained the methylation status
of a region by aligning the actual sequencing reads to
the in silico RE1 and RE2 cut sites and then comparing
the aligned read numbers from TEST and MC samples
to determine the methylation status of a region. The
experimental and analytical approach was applied to low-
quantity cell samples (LQC, 10–100 cells) before being
applied, with necessary modifications of the bioinformatic
algorithms, to single cells.

Our results are consistent with CpG methylation analysis of
bulk cells

We first tested the CGI-seq method with 30 LQC samples.
Reads were aligned onto the human genome version 19,
and methylated as well as unmethylated regions were
called (see ‘Materials and Methods’ section, Supplementary
Table S3). We first validated our results against widely
used benchmark data from the ENCODE Infinium
HumanMethylation450 BeadChip bulk analysis (M450K).
M450K covered 99% of RefSeq promoters and 96% of
CGIs, which was more than RRBS (76.8% CGIs with bulk
cells), and the result was consistent when comparing with
other methods (13,42,43). We used a 5-fold level above
minimal reads of the TEST sample (parameter C = 5) as
the requirement for assigning a region in the TEST sample
as methylated by balancing the detection rate and the data
quality (Supplementary Figure S3a). We found a good
correlation between the global methylation pattern of CGIs
obtained with our method with LQC and the bulk M450K
data (Pearson correlation coefficient R = 0.71, Figure 3A).
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Figure 3. Characterization of CGI-seq on low quantity cells (LQC). (A) The correlation between the averaged methylation score of five 100-cell K562
samples and bulk M450K data with 350 000 K562 cells (UCSC ENCODE website). The Pearson correlation based on all informative CGIs was used
to measure the diversity of CpG methylation. Region SD is the standard deviation of methylation scores of all CpGs in one CGI. Points in dark blue
clusters are those CGIs whose CpGs have a similar methylation score, and points in light blue are those CGIs with diverse methylation of their CpGs.
(B) DNA methylation levels of 41 classes of different regulatory markers between bulk ENCODE RRBS data and averaged LQC data generated by CGI-
seq for K562 cell line. These 41 regions include Cbp, Cbx2, Cbx3, Cbx8, CGI, Chd1, Chd4, Chd7, Cfcf, Ezh2, H2az, H3k27ac, H3k27me3, H3k36me3,
H3k4me1, H3k4me2, H3k4me3, H3k79me2, H3k9ac, H3k9me1, H3k9me3, H4k20me1, Hdac1, Hdac2, Hdac6, Lsd1, Ncor, Nsd2, P300, Pcaf, Phf8, Plu1,
Pol2b, Promoter, Rbbp5, Rest, Rnf2, Sap30, Setdp1, Sirt6 and Suz12. (C) CGI-seq clustering based on Pearson correlation of CGI methylation across 30
LQC samples of four cell lines (Fibroblast-100C, GM12878-100C, iPS-100C, K562-100C and K562-10C). 100C: 100-cell sample; 10C: 10-cell sample. The
samples not indicated with ABH (AciI, BstUI and HpaII) or BstUI are all cut by ABH as RE2. (D) Heatmap of the top 1000 variant CGIs in methylation
across 30 LQC samples of four cell lines.

We then investigated our data compared with ENCODE
bulk data for 41 types of specific regulatory markers; we
found that the methylation level of these markers were
highly consistent between two datasets (R = 0.88–0.89,
Figure 3B and Supplementary Figure S3b). We furthermore
clustered the LQC samples for all detected CGIs and
promoters, and found that the data from the same cell
types clustered together (Figure 3C, D and Supplementary
Figure S4), again supporting the validity of this method.
The methylation levels of these cells (Supplementary Figure
S3d) were in agreement with previous reports; in particular,
we found that iPSC were more methylated than other cell
types (44,45).

To further optimize and characterize our method, we
then conducted three additional investigations using K562
cells with varying cell numbers or alternative RE2 sets: 10-
cell samples digested with ABH, 100-cell samples digested
with ABH and 100-cell samples digested with BstUI. The
results from all samples demonstrated a similar pattern
for both CGIs and promoters (in-group R was about
0.86, Figure 3C, D and Supplementary Figure S4); such a
correlation coefficient is considered excellent for comparing
completely different methodologies (13,14).

As expected, the number of CGIs and CpG sites detected
increased with the sequencing depth (Supplementary
Figure S5). When ABH instead of BstUI alone was used
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as RE2, more sequencing reads were required to generate
the same level of CGI coverage. Indeed, for the same
level of CGI coverage (11.1 million), more than twice the
sequencing depth was necessary (37.0 million versus 16.5
million) for ABH, but ABH led to the coverage of more
than 4 times the number of CpG sites (308.6 k versuss
69.6k, Supplementary Table S3). This observation reflects
the fact that ABH provides multiple overlapping hits for
each AMR, which resulted in more complexity and a
better representation than BstUI alone (Supplementary
Figure S2). This feature of ABH is useful for single cell
measurements so as to maximize the signal obtained with
the MRE digestion and MDA amplification.

scCGI-seq analysis of two hematopoietic cell lines

On the basis of the LQC results, we applied CGI-seq
using ABH as the RE2 to eight K562 and eight GM12878
single cells isolated manually from cultures (Figures 4
and 5; Supplementary Figures S6–11). With the algorithm
described (‘Materials and Methods’ section), the best
coverage of the CGIs we obtained in a single cell was 22 21
(77.1%) of total CGIs (28 691), and the average was 21 798
(76.0%) (Supplementary Table S4 and Figure 4A). When
the data of all 16 single cells generated with scCGI-seq
were merged, 22 227 CGIs (77.5%) and 13 625 promoters
were detected, of which 20 864 CGIs (72.7%) and 12 961
promoters were commonly detected across all 16 single cells.
Notably, this coverage is comparable to conventional RRBS
using millions of cells (22 037 CGIs or 76.8% of total CGIs).
In general, the number of consistently covered CGIs would
be further reduced if more single cell samples were tested
(Figure 4A). Nevertheless, compared to other methods
(Supplementary Figure S6), scCGI-seq provided the best
coverage of shared CGIs when the same number of single
cells was compared. The intersection of the coverage data
of 16 single cells for scCGI-seq was ∼66 times higher than
for scRRBS, and 3.6× higher than for scBS. In contrast,
the number of CGIs consistently detected across 16 single
human cell samples was 323 CGIs (1.13%) by scRRBS (17)
and 4079 CGIs (14.22%) by scBS (18).

We then performed an unsupervised clustering of
the entire scCGI-seq profile of all informative CGIs
and promoters, which readily distinguished the two
hematopoietic cell types (K562 and GM12878) among
the 16 single cell samples (Figure 4B and Supplementary
Figure S7a). Using the 1000 top-variant CGIs and
promoters also effectively identified two cell type groups,
and an appreciable level of cellular heterogeneity in CGI
methylation was observed within each group (Figure 4C
and Supplementary Figure S7b). Similarly, we found
heterogeneity among single cells of the same type using
RNA-seq and chromatin conformation analysis (46,47).

In addition, the methylation levels identified in 10-
cell versus single cell samples, and 100-cell versus single
cell samples, were consistent (R = 0.65–0.82, Figure 4D
and Supplementary Figure S7c and d). When a cutoff
of methylation difference was set at 0.5, only ∼13% of
the CGIs differed between single cell and bulk data for
both cell types (Figure 4E and Supplementary Figure
S7e). We further extended the global comparison of single

cell methylation patterns to several sets of specific genes.
The scCGI-seq profile was compared with the average
of ENCODE bulk RRBS data for the 41 classes of
regulatory markers available for K562 cells and 15 markers
available for GM12878 cells (Figure 4F and Supplementary
Figure S7f). The pattern was highly consistent between
single-cell and bulk CGI-seq (R = 0.90–0.92). We also
validated the reliability of scCGI-seq by comparing the
global methylation status of single cells at different AMRs
to the bulk data generated by the ENCODE consortium
using RRBS (Figure 5A and B; Supplementary Figure S8a
and b). For both informative fragments and CGIs, the
methylation rate measured with ENCODE data was highly
correlated with the methylation score obtained with scCGI-
seq. The heterogeneity of the cellular population quantified
by scCGI-seq and LQC CGI-seq (Supplementary Figure
S8c and d) as well as the coverage for variant categories
of regions were also consistent (Figure 5c; Supplementary
Figure S8e and f). These results demonstrate the robustness
of CGI-seq.

Overall we observed more discrepant calls of
unmethylated than methylated CGIs (12% for K562
and 13% for GM12878). This observation could be due in
part to the possible miscounting of sequences identified as
unmethylated CGIs that actually represented sequence loss
during the processing of single cell-derived DNA, which
is a common occurrence in single cell analysis (16–20).
Furthermore, when using only 10% of the sequencing
reads for analysis, which represents ∼3.5M sequenced
reads and ∼2.1M mapped reads per sample, we found that
the correlation was only slightly reduced (>0.8 for CGIs,
Figure 5D and Supplementary Figure S9), while single
cells were correctly clustered (Supplementary Figure S9b).
This finding allows us to reduce the sequencing depth and
substantially increase the number of single cells per batch
in order to interrogate highly heterogeneous populations
(Supplementary Figure S9c and d). Importantly, the pair
wise Pearson correlation between merged single cells
and merged LQC samples across K562 and GM12878
demonstrated that, as anticipated, the merged single cell
and LQC samples were more correlated within the same
cell line than across cell lines (0.71–0.83 versus 0.52–0.54,
Supplementary Figure S10). This result indicated the value
of scCGI-seq in unsupervised analysis of heterogeneity in
CpG methylation.

We also found that the variation of CpG methylation
within CGIs was much lower than that across CGIs
(Supplementary Figure S11), which is consistent with
previous results (17,18,39). This finding furthermore
confirmed that the MRE digestion status of certain
informative fragments represented the overall methylation
status of the entire CGI. We observed a higher number of
hypermethylated CGIs and promoters and a higher number
of hypomethylated repeat regions in K562 (erythroleukemia
cell) as compared to GM12878 (lymphoblastoid cell)
(Supplementary Figure S12). These findings are supported
by the current understanding of cancer methylation
patterns (8,48).
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Figure 4. scCGI-seq. (A) Intersection and union coverage of CGIs across 16 single cells (SCs) with K562 and GM12878 analyzed together. (B) Unsupervised
clustering based on Pearson correlation of CGI methylation profiles of scCGI-seq analysis across 16 SCs. (C) Unsupervised heatmap of top 1000 variantsof
CGI methylation profiles on scCGI-seq analysis across 16 SCs. (D) Scatter plot between merged eight SCs and merged 100-cell methylation scores across
all CGIs of the scCGI-seq analysis for K562 cell line. The imperfect correlation may due to different algorithms used for CGI-seq and scCGI-seq, and the
limited number of single cells merged. (E) CGI methylation differences between averaged scCGI-seq values of eight SCs and ENCODE bulk M450Kresults
of K562 cell line. (F) Global DNA methylation level of 41 classes of different regulatory markers (the same as in Figure 3B) between the averaged scCGI-seq
analysis of eight SCs and the ENCODE bulk RRBS result of K562 cell line.

DISCUSSION

Here we report the development of scCGI-seq, a bisulfite-
independent method for genome-wide CpG methylome
analysis at the single cell level. With this method, most
AMRs, particularly CGIs, were consistent across all 16
single cells profiled. An unsupervised clustering of all CGIs
and/or promoters revealed the differences in methylation
patterns of single cells from two hematopoietic cell lines,
K562 and GM12878. We found that the CGI methylation
patterns deduced from merged scCGI-seq data were highly
correlated with bulk data derived from the M450K
and RRBS results. scCGI-seq also revealed the level of
epigenetic heterogeneity and the overall methylation level
of a cell type when a set of single cells were analyzed. These
results indicate the potential of the method for applications
such as stratification of a highly heterogeneous population
at the single cell level for detection of subpopulations with
a higher coverage of CGIs than the methods with bisulfite
conversion (16–19).

The simplified procedure with off-the-shelf reagents and
highly multiplexed target sequencing potentially allows for

scale up to high-throughput analysis with cost efficiency
and operation convenience. The minor discrepancy revealed
through the comparison with bulk analyses is mainly
due to the intrinsic differences of the two methodologies
(13,14) as well as cellular heterogeneity (49–51). The loss of
sequences during single cell DNA processing could result
in false calls of unmethylated regions, but our analyses
show that the contribution of this factor is minimal. The
high efficiency of CpG site recovery with our method
could be attributed to the process design in which genome-
scale amplification is performed immediately following the
MRE digestion in the same tube without purification or
other enzymatic treatment, minimizing the loss of DNA
sequences as compared with harsh chemical treatment,
particularly bisulfite conversion.

Compared to scBS or scWGBS, scCGI-seq covers fewer
total CpG sites across the genome because the BS methods
detect all CpG at single nucleotide resolution in those
fragments that are recovered. Although it recovers fewer
fragments, scCGI-seq, consistently detects more CGIs
shared by all single cells analyzed. Our method also
consistently detects more shared CGIs than the scRRBS
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Figure 5. Genome-wide correlation and distribution of scCGI-seq. (A and B) Correlation of scCGI-seq versus bulk RRBS. X is the methylation rate
displayed as 10 bins of the methylation score for the scCGI-seq result of K562, and Y is the methylation score of bulk RRBS of K562. (A) Informative
fragments. (B) CGIs. (C) Comparison of the coverage in different genomic contexts for CGI-seq of LQC and SC samples to ENCODE M450K and
RRBS bulk data of K562 and GM12878 cells. All LQC and SC samples studied in this report were used in the analyses. The standard error of samples
in each group was plotted as error bar. Note that the M450K data has higher coverage than RRBS data. In addition, the M450K and RRBS are bisulfite
conversion-based methods, and so their outputs are similar (Pearson correlation coefficients are 0.91 and 0.92 for CGIs in K562 and Gm12878 data).
(D) The influence of sequencing depth on single cell methylation estimation is shown by Pearson correlation. A total of 3 315 469 kept reads (as 100%)
from K562-SC1 (single cell1) were down-sampled to 90, 80, . . . , and 10%. DNA methylation of informative fragments, CGIs and promoters were estimated
following the single cell method (see ‘Materials and Methods’ section). The correlation between K562-SC1 and down-sampling data (to 10% of the original
reads) is still much larger (0.810 for CGI) than that between K562-SC1 and the other K562 single cell data, which is ∼0.468.

method for each single cell. scCGI-seq does not provide
a result at the single nucleotide resolution, but it can
measure the methylation status down to the level of
single informative fragments, each of which includes at
least four CpG sites, over a single genome and overall
it faithfully informs about the methylation status of the
CGIs, promoters and other AMRs. It has been recognized
that low-depth sequencing for RNA could represent the
transcriptomic profile of each single cell (52); however
this is not the case for whole genome sequencing for
single nucleotide variation (SNV) analysis (53), which
requires high coverage (20), as does the whole genome
DNA methylation analysis at single nucleotide resolution.
A random, shallow sequencing of a whole genome could
only allow a random detection of the DNA sequences,
which would lead to inconsistent, low coverage of the
CGI message (similar to SNV) and would less accurately
reflect single cell methylation pattern. Indeed, scCGI-
seq not only minimizes DNA loss by using a simplified
and mild procedure compared to bisulfite conversion,
but also enriches the CGI sequences so as to maximize
the sequencing efficiency for CGIs. In addition, scCGI-
seq may potentially detect homogeneously methylated
and un-methylated CGIs, or half-methylated CGIs in
which one allele is methylated and the other allele is

unmethylated, but further improvements are necessary for
large-scale population heterogeneity analysis. However, due
to the dependence of a few MREs, which show uneven
distribution on some AMRs or CGIs, and whose digestion
on DNA may be occasionally incomplete although very
rarely for single cell, the CGI-seq may not perfectly detect
some minor difference between cells, especially on certain
AMRs whose MRE sites are not evenly distributed.

In summary, scCGI-seq faithfully captures the
methylation status of a single cell at the genome scale.
It provides a new and robust tool for unsupervised
stratification of a population of single cells, and efficiently
elucidates DNA methylation heterogeneity at the single
cell level, which makes it particularly useful in studies of
development, differentiation, stimulation response and
cancer. However, scCGI-seq does not promise detection of
all small differences between cells. Potential improvements
include recovering shorter fragments with the RE2
digestion so as to further increase the sequencing efficiency
by focusing on CGIs, and recovering more informative
fragments or sites for each detectable methylated region,
and high-throughput and multiplex processing of a large
panel of single cells in a run with an automated instrument.
Because of the high CGI coverage and the faithful
exome-sequence retaining, scCGI-seq could be used in
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combination with scRNA-seq and exome-seq to address
the relationship of DNA mutation, CpG methylation and
RNA expression genome-wide for each single cell (20).
The principle used in scCGI-seq may also be extended
to genome-wide mapping of 5-hydroxymethylcytosine
(5hmC) for single cells using 5hmC-sensitive restriction
endonuclease.
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