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Abstract

Motivation: The Hi-C technology was designed to decode the three-dimensional conformation of

the genome. Despite progress towards more and more accurate contact maps, several systematic

biases have been demonstrated to affect the resulting data matrix. Here we report a new source of

bias that can arise in tumor Hi-C data, which is related to the copy number of genomic DNA. To ad-

dress this bias, we designed a chromosome-adjusted iterative correction method called caICB. Our

caICB correction method leads to significant improvements when compared with the original itera-

tive correction in terms of eliminating copy number bias.

Availability and Implementation: The method is available at https://bitbucket.org/mthjwu/hicapp.

Contact: michor@jimmy.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Our knowledge of the higher-order structure of the genome has rap-

idly expanded over the last decade with the development of several

methods able to elucidate the non-linear spatial conformation of the

genome (Fullwood et al., 2010; Kalhor et al., 2012; Lieberman-

Aiden et al., 2009). One important contribution was the de-

velopment of a chromatin conformation capture-based method

called Hi-C (Lieberman-Aiden et al., 2009), which enables high-

throughput analysis of spatial structures of chromatin. Recent

improvements of the Hi-C protocol led to a characterization of chro-

matin structure from many species at increased resolution (Dixon

et al., 2012, 2015; Jin et al., 2013; Le et al., 2013; Lieberman-Aiden

et al., 2009; Nagano et al., 2013; Naumova et al., 2013; Rao et al.,

2014), from the original 1 Mb map (Lieberman-Aiden et al., 2009)

to the most recent 1 Kb map (Rao et al., 2014).

Increasing effort has since been devoted to studies of the biolo-

gical function and consequences of the 3D chromatin architecture,

such as its role in promoter-enhancer regulation (Jin et al., 2013)

and associations between chromatin conformation and DNA repli-

cation timing (De and Michor, 2011; Fudenberg et al., 2011; Pope

et al., 2014) as well as local mutation rates (Liu et al., 2013). Hi-C

data at different resolutions may enable researchers to infer different

levels of genomic interactions; for instance, a 1 Mb resolution eluci-

dates the overall folding principles of chromosomes, which were

found to be consistent among different cell types within each species

(Lieberman-Aiden et al., 2009); a 50–100 Kb resolution provides

chromosome domain information which is associated with histone

marks (Dixon et al., 2012; Huang et al., 2015); and a 1–10 kb reso-

lution enables detailed studies of chromatin looping, such as enhan-

cer–promoter or enhancer–enhancer interactions, which can be

specific to different cell types (Jin et al., 2013; Rao et al., 2014).

Raw Hi-C data hve been observed to have both technical and

biological biases (Yaffe and Tanay, 2011), with three predominant

sources of bias identified so far: fragment length, GC bias and mapp-

ability. To correct for these biases, many software packages have

been developed in order to generate an unbiased interaction map

(Ay and Noble, 2015; Hu et al., 2012; Imakaev et al., 2012; Li

et al., 2015; Sauria et al., 2015; Servant et al., 2012; Shavit and Lio,

2014; Yaffe and Tanay, 2011). Hicpipe (Yaffe and Tanay, 2011)

and hicnorm (Hu et al., 2012) are explicit correction methods which

fit probabilistic and regression models, respectively, to normalize

the raw Hi-C map. These approaches require a priori knowledge of

the biases. Another method, used in software such as Hiclib

(Imakaev et al., 2012) and HiCorrector (Li et al., 2015), performs
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an iterative correction (IC), which does not require a priori know-

ledge of the biases. Such methods use a matrix balancing or scaling

algorithm (Knight and Ruiz, 2013; Sinkhorn and Knopp, 1967) to

iteratively correct for all possible biases, based on the assumption

that all loci should have equal representation in the data if there is

no bias. IC-based methods generate a bias vector defined as IC bias

(ICB, denoted as B below) that converts the raw matrix (R) to a nor-

malized matrix (Nij¼BiBjRij in which i and j represent two genomic

loci). Because of ease of application and high running speed, easy

transformation between the raw and normalized matrices and no re-

quirement of the explicit information on biases, IC-based methods

(also called ICB correction) have become the most widely used Hi-C

normalization approaches that can correct for both known and un-

known biases in many current applications (Rao et al., 2014).

A novel source of bias that can arise in Hi-C data is related to

the copy number of genomic material. This type of bias has so far

been unaccounted for since most Hi-C applications investigate nor-

mal tissue and healthy cell line samples, which have mostly uniform

copy numbers of chromosomes. However, once tumor samples are

analyzed, biases related to copy number alterations become import-

ant and need to be corrected for in order to obtain an accurate view

of the interaction map between genomic locations. So far, limited

Hi-C experiments have been carried out on tumor samples (Barutcu

et al., 2015; Rao et al., 2014; Rickman et al., 2012). For a genome

with non-uniform copy number, such as that of tumor cells, DNA

copy number variation can introduce critical bias in Hi-C data be-

cause genomic locations with a higher copy number have a greater

chance to be sequenced in the Hi-C protocol, and genomic locations

with low copy number might not be detected at all in Hi-C data.

We first identified the bias caused by DNA copy number by ana-

lyzing the ENCODE K562 Hi-C data (Rao et al., 2014).

Surprisingly, we found that the copy number bias still existed after

within-chromosome ICB correction (Li et al., 2015). Further ana-

lyses demonstrated that the ICB method can correct for copy num-

ber biases within each chromosome but not between chromosomes,

which also cannot be adjusted for simply by using total or average

contact counts of chromosomes. By utilizing the count-distance

curve between the contact counts and the genomic distance between

the contact pairs, we converted the problem of removing the biases

across chromosomes to the problem of minimizing the differences

across count-distance curves of different chromosomes. We thus de-

signed a linear regression-based chromosome-level adjustment

method called caICB, which is based on the ICB protocol, to correct

for this bias. We performed the analyses on multiple resolution con-

tact maps (1 Mb, 250, 100 and 10 Kb) and found that the perform-

ance of our caICB correction is significantly better than the original

ICB method in terms of correcting for copy number biases. Our ana-

lyses show that the three previously identified bias factors are also

accurately corrected for by caICB. Furthermore, the caICB correc-

tion is robust when using a small subset of genomic ranges instead

of using the whole genome contact map, and is easy and fast to

apply even for extremely high-resolution maps. Our method does

not require copy number data for the samples for which Hi-C data

are available, and has the potential to adjust for other biases in Hi-C

data without a priori knowledge.

2 Methods

We evaluated copy number as well as fragment length, GC content

and mappability biases in Hi-C data of the K562 cancer cell line.

The raw contact counts in 1 Mb, 250 Kb, 100 Kb and 10 Kb

resolution Hi-C maps were obtained from GEO with accession num-

ber GSE63525 (Rao et al., 2014). The maps had already been

pre-processed to remove experimental artifacts. The ICBwas then

determined using HiCorrector (Li et al., 2015) for 30 iterations

within each chromosome. Different subsets of genomic ranges were

considered to study the bias effects in K562 Hi-C data

(Supplementary Fig. S1). We also applied our method to MCF7

Hi-C data (Barutcu et al., 2015) for 1 Mb and 250 Kb resolutions.

The raw fastq files were downloaded from GEO with accession

number GSE66733 (Barutcu et al., 2015). HiCup (Wingett, et al.,

2015) was used to pre-process the data to remove experimental arti-

facts, which resulted in interaction maps with 1 Mb and 250 Kb

resolution. The subsequent processing steps were the same as above.

2.1 Spline model
A significant drop in contact counts was observed with increasing

genomic distance between two loci of the same chromosome in all

published Hi-C datasets. Because of the different Hi-C protocol set-

tings, it is difficult to identify a single function that can capture the

relationship between contact counts and genomic distance (Ay et al.,

2014). Thus, in previous studies (Ay et al., 2014; Dixon et al., 2012;

Jin et al., 2013; Rao et al., 2014), local regression methods such as

loess or spline were employed to capture this relationship. In our

analysis, we used spline implemented as the R function ‘smooth.s-

pline’ (http://www.bioconductor.org/) to capture the relationship.

First, the mean contact counts (oi) among all locus pairs with the

same genomic distance (di) were calculated by removing extreme

data points that are outside of a 10-fold of interquantile range

(IQR). Then spline models were fit to the resulting oi and di pairs to

capture the expected contact counts for different genomic distances.

The analyses were performed on raw data, ICB-corrected and

caICB-corrected data (see below) of different resolutions in order to

calculate the observed/expected (O/E) values in different conditions.

The O/E values were then used to evaluate the results of different

normalization strategies.

2.2 Linear model to correct for ICB
By utilizing the count-distance curve between the contact counts and

the genomic distance between the contact pairs, we converted the

problem of removing the biases across chromosomes to the problem

of minimizing the differences across count-distance curves of differ-

ent chromosomes. We assumed that the mean contact counts of the

same genomic distances for different chromosomes are the same if

no bias were observed in the Hi-C data. We propose a linear

regression-based method to minimize the differences between count-

distance curves of different chromosomes, which can correct for the

across-chromosome bias without changing the within chromosome

bias structure learned from ICB correction step. Specifically, the

mean (ICB-corrected) contact counts (Oijj, i¼2, ., K) among all

locus pairs with the same genomic distance (dijj, i¼2, ., K) in each

chromosome j (j¼1, ., N) were calculated by removing the extreme

data points that were outside of a 10-fold IQR. Genomic distance

between locus pairs was calculated by

dijj ¼ r � i; i ¼ 2; :;K;

where r is the resolution of the Hi-C map, i is the binning step be-

tween locus pairs, j is the chromosome index and K is the tuning

parameter controlling the number of adjacent interaction bins from

each genomic locus chosen for the correction. This parameter repre-

sents the tradeoff between accuracy and efficiency, since larger val-

ues of K include more data points, which reduces efficiency but
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increases accuracy, and vice versa. K equals to 200 was used in all

analyses in this study. Then linear regression on Oijj between every

chromosome pair was performed as follows:

E Oijm
� �

¼ bm;n �Oijn; m 2 j; n 2 j;

where E Oijm
� �

is the linear estimation of Oijm from Oijn, and the co-

efficient bm;n represents the bias between chromosomes m and n.

This step was taken to calculate the coefficient matrix

(Bm�n; m 2 j; n 2 j) representing the biases between each chromo-

some pair. Bm�n is a m�n matrix with elements bm;n.The matrix

Bm�n was further standardized by dividing with coefficients from

chromosome 1:

b
0

m;n ¼
bm;n

bm;1

Then cbias was learned as the square root of the median standar-

dized coefficients of each chromosome:

cbiasc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
medianðb0m;nÞ

q
; n ¼ 1; 2; . . . ; N; m 2 j; c 2 j:

Finally, caICB was calculated from ICB by correcting for the

chromosome level bias (cbias) by applying

caICBb
c ¼ ICBb

c � cbiasc

The caICB correction ideally accounts for all biases in the Hi-C

data, and was used to normalize the raw count matrix to generate a

corrected Hi-C map, or alternatively can be used in the Fit-Hi-C

package (Ay et al., 2014) to obtain an unbiased list of significant con-

tacts. The caICB correction algorithm was implemented in the

HiCapp Hi-C analysis pipeline, which can be obtained from https://

bitbucket.org/mthjwu/hicapp. The implementation of our caICB cor-

rection includes and extends the ICB correction, which can correct

for both within- and across-chromosome copy number biases as well

as other potential biases in raw Hi-C maps of any given resolution.

2.3 Calculation of explicit biases
Segmentation results of snp6.0 microarray data of all available tumor

cell lines were obtained from the CCLE project website (Barretina

et al., 2012). Log2 copy number, which is the log2 ratio of the tumor

sample intensity to the normal sample intensity, of the genomic bins

in different resolutions was calculated from segmentation results by

using the DNAcopy package in bioconductor (Seshan and Olshen,

2016). The log2 multiplicative copy number was calculated by adding

the log2 copy numbers of the two genomic bins of each locus pair. In

silico restriction enzyme cutting of the hg19 version of the human gen-

ome was performed by using the ‘hiccup_digester’ script from the

HiCUP package (Wingett et al., 2015); fragment length was then ob-

tained from the in silico cutting results. Surrounding sequences of 200

and 500 bp around each restriction enzyme cutting site were used to

calculate the GC content and mappability scores, respectively. The

fragment-based score was determined by averaging the scores of the

two ends of each fragment. GC content was calculated by using bed-

tools (Quinlan and Hall, 2010), and mappability was obtained from

UCSC genome browser tables (Derrien et al., 2012).

3 Results

3.1 DNA copy number is a critical bias factor in tumor

Hi-C data
DNA copy number variation is a hallmark of human cancer

(Hanahan and Weinberg, 2011). Most tumors display several copy

number gain and loss events at the time of diagnosis, which provides

their genomes with a non-uniform copy number pattern. Previous

Hi-C applications (Dixon et al., 2012, 2015; Jin et al., 2013;

Lieberman-Aiden et al., 2009; Rao et al., 2014) have mainly focused

on studying looping principles of normal tissues and cell lines, which

rendered investigators unaware of DNA copy number as a potential

source of bias in a non-uniform copy number genome. By analyzing

Hi-C data from the K562 cell line (Rao et al., 2014), we identified

DNA copy number, in addition to fragment length, GC content and

mappability, as a significant source of bias in Hi-C contact counts

(Fig. 1). Since the Hi-C contact counts are associated with genomic

distance between locus pairs, the O/E metric by distance was used in

all comparisons throughout. We employed a similar method as

described in Ay et al. (2014) to calculate the expected contact counts

at each genomic distance (see Section 2.1). We observed a positive

correlation between DNA copy number and O/E in the 2D bias plot

in different resolution Hi-C maps in both K562 and MCF7 cells

(Fig. 1a and b and supplementary Fig. S2). This finding was consist-

ent with our expectation that genomic loci with more DNA copies

tend to be sequenced more frequently in the Hi-C protocol, and vice

versa. Because of the strong positive correlation between DNA copy

number and the O/E ratio, we then generated a log2 multiplicative

copy number value for each locus pair, which was calculated by

adding the log2 ratios of copy numbers of the two genomic loci of

each locus pair. We found that this metric roughly log linearly

Fig. 1. DNA copy number is positively correlated with Hi-C contact counts in

K562 and MCF7 cells. (a, b) The 2D bias plot demonstrates that log2 copy

number ratios are positively correlated with contact counts in 1 Mb resolution

Hi-C maps. Genomic bins of different log2 copy number ratios are subdivided

into 10 quantile groups. All bin pairs are mapped into the 10� 10 quantile

group pairs. Each tile in the plot is the median log2 ratio of observed over ex-

pected (O/E) in each quantile group pair. Red represents situations in which

more reads than expected were detected; blue means fewer reads than ex-

pected were detected; grey means equal reads than expected were detected;

white means no locus pair with Hi-C reads was mapped in the quantile group

pair. (c, d) Positive correlation between raw O/E ratios and log2 multiplicative

copy number in 1 Mb resolution Hi-C maps. The log2 multiplicative copy

number was calculated by adding the log2 ratios of copy numbers of the two

genomic bins of each locus pair. The log2 multiplicative copy number was

converted to discrete numbers by rounding to one decimal. Dark colored dots

are the mean O/E values; light colored areas are the 95% CIs of the data
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increased with the O/E ratio in the core region, defined as [�2, 2],

accounting for >99 and 97% of all locus pairs in K562 and MCF7

cells, respectively (Supplementary Figs S3b and d and S4). Locus

pairs with extremely high copy number displayed a high degree of

variability due to too few data points contained in each copy num-

ber bin (Fig. 1c and d, Supplementary Fig. S3a and c). Locus pairs

with extremely low DNA copy number are not represented with an

adequate number of reads in the Hi-C protocol (Fig. 1c and d,

Supplementary Fig. S3a and S3c), which renders this part of the data

uncorrectable by any method.

3.2 Chromosome-adjusted iterative correction
The iterative correction (IC) method based on the matrix balancing

algorithm is one of the most widely used methodologies to remove

both explicit and unknown biases from Hi-C data (Ay and Noble,

2015). The advantage of the IC method is that it provides an ICB

vector, instead of a bias matrix, which contains all information used

to correct the Hi-C data matrix. The IC method (also called ICB cor-

rection) has been demonstrated to work well in normal samples and

cell lines (Ay and Noble, 2015; Imakaev et al., 2012; Li et al., 2015;

Rao et al., 2014; Sauria et al., 2015), which have uniform copy

number genomes. However, the ICB correction should not be dir-

ectly applied to data from tumor samples, such as the K562 cell line,

because such samples display a significant degree of variation in

copy number across chromosomes (Supplementary Fig. S5). The

ICB correction is preferentially applied chromosome by chromo-

some to prevent overloading computational resources when analyz-

ing high-resolution Hi-C maps (Ay and Noble, 2015; Sauria et al.,

2015). Use of the ICB correction leads to an uncorrected

chromosome-level bias (cbias) (Figs 2 and 3a–d), thus causing biased

calling results of significant contacts (Fig. 3e). This bias cannot sim-

ply be adjusted for by using total or average contact counts of

chromosomes due to the length differences of chromosomes

(Supplementary Fig. S6). In Hi-C data, contact counts decrease with

increasing genomic distances such that smaller chromosomes have

fewer long distance locus pairs than larger chromosomes. This ob-

servation leads to the fact that average contact counts of chromo-

somes are negatively correlated with chromosome length

(Supplementary Fig. S6a), and total contact counts of chromosomes

are positively correlated with chromosome length (Supplementary

Fig. S6b). For the K562 cell line, the chromosome bias is very appar-

ent, especially for chromosome 9 in lower resolution Hi-C maps

(Fig. 3a and Supplementary Fig. S5). Further analysis shows that

chromosome-level copy numbers are highly correlated with

Fig. 2. An overview of the caICB correction algorithm. The algorithm first cal-

culates the empirical mean of contact counts over genomic distances for all

chromosomes in any resolution of an ICB-corrected contact matrix. We used

linear regression, forcing the intercept to be 0 in each chromosome pair, to

generate a coefficient matrix. The coefficient matrix is further standardized

and summarized as a cbias which is then used to adjust the original ICB to ob-

tain the caICB-corrected Hi-C map with minimal differences among

chromosomes

Fig. 3. Performance of the caICB correction compared with raw data and ICB

correction using the 1 Mb K562 Hi-C map as an example. (a) Schematic of the

caICB algorithm, which minimizes the differences across count-distance

curves of different chromosomes. The count-distance curve is plotted: Hi-C

read pairs are binned into 1 Mb resolution bins. Bin level counts data are nor-

malized by the ICB (left) and caICB (right), respectively. Mean corrected con-

tact counts among all bin pairs for each genomic distance are shown as dots,

and dots representing data from the same chromosome are connected by

lines. Each chromosome is displayed in a different color. (b) The relationship

between chromosome-level observed divided by expected counts (O/E) and

chromosome-level copy number. The mean O/E among all locus pairs for

each chromosome is calculated as chromosome-level O/E. The mean copy

number among all locus pairs for each chromosome is determined as

chromosome-level copy number. Linear regression fits are shown as lines.

Note that the chromosome-level copy number bias is largely corrected by the

caICB methodology. Raw: raw Hi-C data; ICB: ICB-corrected Hi-C data. caICB:

caICB-corrected Hi-C data. (c) The 2D bias plot of ICB- and caICB-corrected Hi-

C maps. The raw Hi-C map is shown in Figure 1a. (d) Locus pairs are binned

into six bins based on log2 multiplicative copy number. O/E ratios of all locus

pairs in each bin are shown in the boxplots. O/E distributions of all locus pairs

in different log2 multiplicative copy number bins are significantly improved

after caICB correction. (e) Significant contact calls. Calls for significant con-

tacts are biased to high copy number genomic loci, and can be corrected for

by the caICB correction. In the analyses, we use Fit-Hi-C to identify significant

contacts using the raw data, ICB- and caICB-corrected matrices, respectively.

Contacts with q-value<0.01 are identified as significant. All contacts of differ-

ent log2 multiplicative copy number are divided into 10 quantile groups.

Within each quantile group, the percent of significant contacts to all contacts

is calculated and shown as dots. The linear regressions as well as 95% CI are

displayed. (f) Overlap between Hi-C loops identified by HiCCUPs and signifi-

cant contacts identified from ICB- and caICB-corrected results. The top N sig-

nificant contacts identified by Fit-Hi-C using both ICB- and caICB-corrected Hi-

C matrices overlap with Hi-C loops, with a larger number of overlaps found

for the caICB as compared with the ICB method
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chromosome-level Hi-C contact O/E ratios even after ICB correction

(Fig. 3b).

To correct for this particular source of bias, we designed a linear

regression-based chromosome-level adjustment method called

caICB (Fig. 2), which represents an extension of ICB correction. We

performed our analyses on multiple resolution contact maps (1 Mb,

250, 100 and 10 Kb) in K562. The algorithm initiates with the ICB

corrected Hi-C data matrix. Our method assumes equal representa-

tion of genomic locus pairs with similar genomic distances located

on different chromosomes if there were no bias in the Hi-C maps.

Our approach first calculates the empirical mean of contact counts

over genomic distances for all chromosomes. We used linear regres-

sion by forcing the intercept to be 0 in each chromosome pair to gen-

erate a coefficient matrix. The coefficient matrix is further

standardized and summarized as a cbias vector. This vector is then

used to adjust the original ICB- to obtain the caICB-corrected data

(Fig. 2). The caICB correction minimizes the difference among

chromosomes (Fig. 3a) and organically corrects for chromosome-

level copy number biases (Fig. 3a and b, Supplementary Figs S7 and

S8). The caICB corrected O/E ratio provides an unbiased Hi-C map

for different copy number regions across different resolutions (Fig.

3c and d and Supplementary Fig. S9).

3.3 The caICB correction leads to unbiased significant

contact calling results
Most Hi-C analyses report a list of significant contacts (Dixon et al.,

2012, 2015; Jin et al., 2013; Rao et al., 2014), no matter whether

the study was designed to ultimately investigate folding principles of

the genome (Rao et al., 2014) or long-range DNA interactions (Jin

et al., 2013). Therefore, an unbiased significant contact list is an es-

sential starting point for the downstream functional analysis or

modeling of Hi-C data. Here we applied Fit-Hi-C (Ay et al., 2014),

which uses a spline fitting followed by a binomial test to investigate

whether there were significantly more contact counts than expected

in the same genomic distances, to identify significant contacts in po-

tentially interesting genomic regions of four resolution Hi-C maps of

K562 cells. By selecting a q-value < 0.01 as the significance thresh-

old, we found that significant contacts are biased to high copy num-

ber genomic loci for un-corrected Hi-C maps of a non-uniform copy

number genome, such as that of tumor cells (Fig. 3e). This finding

demonstrates that a correction is necessary for Hi-C data of tumor

samples and other cell types with copy number variation. The caICB

correction leads to a nearly unbiased significant contact calling re-

sult, unlike the ICB correction (Fig. 3e and Supplementary Fig. S10).

Taking the 100 Kb resolution map as an example, the standard devi-

ation of the percent of significant contacts across all copy number

groups for caICB correction results is 0.017, which is only half (0.

035) that of ICB correction results and one-fourth (0.071) that of

un-corrected results. The regression curves of 1 Mb resolutions are

much flatter for caICB-corrected results (regression slope¼0. 04,

P¼0.44) than for ICB-corrected (regression slope¼0.13, P¼0.04)

and raw results (regression slope¼0.18, P¼0.007) (Fig. 3e), which

indicates a more efficient bias elimination by the caICB as compared

with the ICB correction. Similar results were also observed in other

resolutions (Supplementary Fig. S10). In addition, when choosing

the top N significant contacts identified from both the ICB- and

caICB-corrected matrices and comparing them with Hi-C loops

identified by HiCCUPs for K562 cells (Rao et al., 2014), we found

that the caICB correction provides higher overlapping results with

Hi-C loops than the ICB correction (Fig. 3f).

3.4 Performance of caICB for all known explicit bias

factors
In previous studies (Hu et al., 2012; Yaffe and Tanay, 2011), 2D

bias plots were used as an evaluation measurement of the normaliza-

tion step. We therefore utilized a similar approach to investigate the

performance of the caICB correction with regard to known explicit

biases. We first confirmed that, by comparing to raw O/E values as

well as residual scores across different methods (Fig. 4 and

Supplementary Fig. S11), the ICB correction significantly reduces all

three explicit biases—mappability, GC bias and fragment length—at

different resolutions. As expected, the caICB correction performs

similarly well with respect to these biases. For instance, the reduc-

tion in the fragment length bias is similar between the ICB and

caICB corrections (Fig. 4a). The GC content bias is also largely un-

changed between ICB and caICB corrections, except for a slight in-

crease in the 100 Kb resolution map in caICB; however, the overall

distribution of all tile residuals is unchanged (Supplementary Fig.

S11b). Furthermore, mappability is a bias factor that may benefit

from the caICB correction; consistent with this expectation, we

observed a clear decrease of both mean and variance of the distribu-

tion of tile residuals for mappability in lower resolution maps

(weighted t-test P¼2.1E-4 for 1 Mb and P¼5.3E-4 for 250 Kb),

but not in higher resolution maps (Fig. 4 and Supplementary Fig.

S11). Most importantly, the caICB correction significantly reduces

the copy number bias in lower resolution maps (weighted t-test

P¼1.6E-4 for 1 Mb and P¼0.03 for 250 Kb, Fig. 4 and

Supplementary Fig. S11). For the highest resolution investigated, the

10 kb map, the decrease of the mean residual score is not as signifi-

cant as that in lower resolution maps after caICB correction, but the

variance of the residuals is significantly decreased (Supplementary

Figs S11c and S12). Similar results were also observed for the

100 Kb map (Supplementary Figs S11b and S12). Therefore, we

found that the caICB correction significantly reduces the copy num-

ber bias in all resolution maps without increasing the other sources

of bias, and can furthermore potentially reduce some of the biases

such as mappability in certain resolutions.

3.5 Stabilization of the caICB correction
The main goal of the caICB correction algorithm is to capture and

correct for the cbias in Hi-C maps. The cbias results obtained for

different resolutions of Hi-C maps of the K562 cell line are overall

similar, but there are minor differences. For instance, the cbias vec-

tor of chr9 in lower resolution Hi-C maps is around 0.6 but is 0.75

in the 10 Kb Hi-C map. In another case, the cbias vector of chr4 is

decreased with the resolution increase (Fig. 5a). Therefore, the cbias

results cannot be shared across all resolution Hi-C maps, and need

to be calculated separately for different resolution Hi-C maps. To

calculate the cbias in extremely high-resolution Hi-C maps (�10

Kb), it is preferable to choose a small genomic range to perform the

algorithm instead of using the whole contact map, since this ap-

proach significantly increases the running speed and reduces mem-

ory usage. In the methodology, the parameter K represents the

tuning parameter for choosing the nearest K binning steps of each

genomic locus to perform the algorithm (see Section 2). We tested

the algorithm by using different values of K for 100 Kb Hi-C maps,

and found that the resulting cbias vectors were very stable across dif-

ferent values of K from 5 to 800 (Fig. 5b). Especially when K is

larger than 100, the cbias vectors were identical across different val-

ues of K, up to two decimal places (Fig. 5b). Therefore we concluded

that the algorithm is robust with regard to using a subset of genomic

ranges, and we used K¼200 in this study. In general, we
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recommend using a K such that K times the resolution is equal to the

genomic range that users are interested in.

3.6 Application to other datasets
In addition to K562 cells, we also applied the caICB correction to

MCF7 Hi-C data, which has a higher level of copy number variation

(Supplementary Fig. S13). The 2D bias plots show that the caICB

correction can successfully eliminate the copy number bias

(Supplementary Fig. S14a and b). We furthermore surveyed

chromosome-level copy number differences in all CCLE tumor cell

lines (Barretina et al., 2012) and found that a substantial number of

tumor cell lines (�75% of all CCLE tumor cell lines) display an even

higher level of chromosome-level copy number variations than

K562 cells (Supplementary Fig. S14c). This finding demonstrates

that chromosome-level copy number bias is very common in

tumor Hi-C data, which makes the caICB correction a widely ap-

plicable normalization algorithm for studying the 3D genome of

cancer cells.

4 Conclusion

Our proposed method, caICB, is able to efficiently correct for the

copy number bias as well as other potential biases in tumor Hi-C

data without a priori knowledge of these biases. Our method is suit-

able for extremely high-resolution Hi-C maps, because it can achieve

robust results when using a small subset of genomic ranges instead

of using the whole genome contact map. The method does not re-

quire copy number data for the samples for which Hi-C data are

available, and has the potential to adjust for other possible biases in

Hi-C data without their priori knowledge. Despite the fact that copy

number data is not required for the caICB correction algorithm, it

would be preferable to monitor copy number bias in the data before

and after normalization when analyzing Hi-C data in tumor sam-

ples. This observation arises because for extreme cases, such as high-

level amplification or near homozygous deletion, which accounts for

<1% of all locus pairs in K562 cells but may account for a larger

fraction in other tumor cells, the contact counts might either be too

high or too low to be corrected for by current methods. In these

cases, careful evaluation of normalization results is necessary to pre-

vent making biased conclusions.

Fig. 4. Effects of the ICB and caICB corrections on four know explicit bias fac-

tors in 1 Mb K562 Hi-C maps. Fragment length (a), GC content (b), and mapp-

ability (c) are shown in 2D bias plots. Genomic bins of 1 Mb are cut into 10

quantile groups. All bin pairs are mapped into the 10 � 10 quantile group

pairs. Each tile in the plot is the median log2 ratio of O/E in each quantile

group pair. Red represents situations in which more reads than expected

were detected; blue means fewer reads than expected were detected; grey

means equal reads than expected were detected d. (e) Residual plots show a

quantitative evaluation of the performance of different correction algorithms

on four bias factors. The residual is calculated by subtracting one from the

value in each tile; a residual of all zero provides an unbiased Hi-C map.

Residuals of tiles in a-d are plotted as dots, and the dot size represents the

number of locus pairs in each tile. The mean values of residuals weighted by

dot sizes are calculated within each group and are shown as black dots

Fig. 5. Stabilization of the caICB correction. (a) cbias varies across different

resolution HiC maps. cbias is calculated for 1 Mb, 250, 100 and 10 Kb reso-

lution K562 Hi-C maps, respectively. (b) cbias is stable with different values of

the parameter K measured in the 100 Kb Hi-C map. Different colors represent

different chromosomes
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Notably, we found that within-chromosome copy number biases

are very effectively corrected by the original ICB method. Therefore,

downstream analyses, such as Hi-C loops identified by HiCCUPs,

are not biased even when using ICB-corrected Hi-C maps, because

the background model is built locally within each chromosome.

However, downstream analyses using the genome-wide background,

such as the identification of significant contacts by Fit-Hi-C, can be

significantly biased in ICB-corrected Hi-C maps; this bias is largely

eliminated by using the proposed caICB correction. Furthermore,

the caICB correction makes the Hi-C contact counts comparable

across the genome, and has potential application for comparing Hi-

C data between tumor and normal cells with different genomic copy

numbers.
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